Find the area under the curve $y = 2x - x^2$ from x = 1 to x = 2 with n = 4 left-endpoint rectangles.

Find the area under the curve $y = 2x - x^2$ from x = 1 to x = 2 using the Trapezoid Rule with

2. n = 4.

. 65625

Find the area under the curve $y = 2x - x^2$ from x = 1 to x = 2 using the Midpoint Formula with

3. n = 4.

Find the area under the curve $y = 2x - x^2$ from x = 1 to x = 2.

2 3

- Find the average value of $f(x) = 4x \cos x^2$ on the interval $\left[0, \sqrt{\frac{\pi}{2}}\right]$.
- 6. Find the average value of f(x) = 2|x| on the interval [-1, 1].

1

7. Find the length of the curve described by the parametric curve:

 $x = \cos t$ and $y = \sin t$ from $t = \frac{\pi}{6}$ to $t = \frac{\pi}{3}$

8. Find the length of the curve described by $x = \frac{y^3}{18} + \frac{3}{2y}$ from y = 2 to y = 3.

4736

- 9. Find the slope of the curve $r = 2\cos 4\theta$.
- 10. Find the slope of the curve $r = 2 3\sin\theta$ at $(2, \pi)$.

 $\frac{2}{3}$

- 11. Find the area inside the limaçon $r = 4 + 2\cos\theta$.
- 12. Find the area inside $r = 2\cos\theta$ and outside r = 1.

1.913

13. Find the area inside the lemniscate $r^2 = 6\cos 2\theta$ and outside the circle $r = \sqrt{3}$.