Parametric and Polar Equations AP Review

- 1. Find the Cartesian equation of the curve represented by $x = \sec^2 t 1$ and $y = \tan t$, $-\frac{\pi}{2} < t < \frac{\pi}{2}$.
- 2. Find the Cartesian equation of the curve represented by x = t and $y = \sqrt{1 t^2}$, -1 < t < 1.
- Find the Cartesian equation of the curve represented by x = 4t + 3 and $y = 16t^2 9$, $-\infty < t < \infty$.
- 4. Find the equation of the tangent line to $x = t^2 + 4$ and y = 8t at t = 6. $y 48 = \frac{2}{3}(x 40)$
- 5. Find the equation of the tangent line to $x = \sec t$ and $y = \tan t$ at $t = \frac{\pi}{4}$. $y = \sqrt{2}(x \sqrt{2})$
- 6. The motion of a particle is given by $x = -2t^2$ and $y = t^3 3t + 9$, $t \ge 0$. Find the coordinates of the particle when its instantaneous direction of motion is horizontal. (-2,7)
- 7. The motion of a particle is given by $x = \ln t$ and $y = t^2 4t$. Find the coordinates of the particle when its instantaneous direction of motion is horizontal. (In 2, -4)
- S. The motion of a particle is given by $x = 2 \sin t 1$ and $y = \sin t \frac{t}{2}$, $0 \le t < 2\pi$. Find the times when the horizontal and vertical components of the particle's velocity are the same. + = 21 and 411

1989 BC4

Consider the curve given by the parametric equations

$$x = 2t^3 - 3t^2$$
 and $y = t^3 - 12t$

(a) In terms of t, find $\frac{dy}{dx}$. $\frac{3t^2-12}{12(t+1)} = \frac{t-4}{2t^2-2}$

(b) Write an equation for the line tangent to the curve at the point where t=-1.

(c) Find the x- and y-coordinates for each critical point on the curve and identify each point as having a vertical or horizontal tangent.