Differential Equations Review

If $\frac{dy}{dx} = \frac{7x^2}{y^3}$ and y(3) = 2, find an equation for y in terms of x.

$$y = 4\sqrt{\frac{28}{3}}x^3 - 236$$

- If $\frac{dy}{dx} = 5x^2 y$ and y(0) = 6, find an equation for y in terms of x.
- 2. dz
 - If $\frac{dy}{dx} = \frac{1}{y + x^2y}$ and y(0) = 2, find an equation for y in terms of x. $y = \sqrt{\frac{2arctanx}{4}}$
 - If $\frac{dy}{dx} = \frac{e^x}{y^2}$ and y(0) = 1, find an equation for y in terms of x.
- $4. \qquad ax \quad y^2$

5.

7.

If $\frac{dy}{dx} = \frac{y^2}{x^3}$ and y(1) = 2, find an equation for y in terms of x.

$$y = 2x^2$$

If $\frac{dy}{dx} = \frac{\sin x}{\cos y}$ and $y(0) = \frac{3\pi}{2}$, find an equation for y in terms of x.

The rate of growth of the volume of a sphere is proportional to its volume. If the volume of the sphere is initially 36π ft³, and expands to 90π ft³ after 1 second, find the volume of the sphere after 3 seconds.

- Use Euler's Method, with h = 0.25, to estimate y(1) if y' = y x and y(0) = 2.
- Use Euler's Method, with h = 0.2, to estimate y(1) if y' = -y and y(0) = 1.

. 32768

- Use Euler's Method, with h = 0.1, to estimate y(0.5) if $y' = 4x^3$ and y(0) = 0.
- Sketch the slope field for $\frac{dy}{dx} = 2x$.

- Sketch the slope field for $\frac{dy}{dx} = -\frac{x}{y}$.
- Sketch the slope field for $\frac{dy}{dx} = \frac{x}{y}$.

Logistic Growth Problems AP Calculus BC

Name: _______Date: ______

4		
1	The carrying capacity for deer in a particular small town of increase in their numbers is proportional to both the n $2,200 - n$. If there were $1,000$ deer one month ago and many months will it take the deer to number $2,100$?	umber, n, of deer and
2	Guppy Population A 2000-gallon tank can support no more than 150 guppies. Six guppies are introduced into the tank. Assume that the rate of growth of the population is $\frac{dP}{dt} = 0.0015P(150 - P),$ where time t is in weeks. (a) Find a formula for the guppy population in terms of t. (b) How long will it take for the guppy population to be	
3	Gorilla Population A certain wild animal preserve can support no more than 250 lowland gorillas. Twenty-eight gorillas were known to be in the preserve in 1970. Assume that the rate of growth of the population is $\frac{dP}{dt} = 0.0004P(250 - P).$ where time t is in years. (a) Find a formula for the gorilla population in terms of t. (b) How long will it take for the gorilla population to reach the carrying capacity of the preserve?	a) p(t)= 250 1+7,9825 e ===================================
4	Suppose that the growth of a population $y = y(t)$ is given by the logistic equation $y = \frac{60}{5 + 7e^{-t}} = \frac{60}{5(1 + \frac{7}{5}e^{-t})} = \frac{12}{1 + \frac{7}{5}e^{-t}}$ (a) What is the population at time $t = 0$? (b) What is the carrying capacity L ? (c) What is the constant k ? (d) When does the population reach half of the carrying capacity? (e) Find an initial-value problem whose solution is $y(t)$.	a) 5 e) $\frac{19}{12} = \frac{19(1-\frac{9}{12})}{19(1-\frac{9}{12})}$ c) 1 d) 0.336
5	Suppose that the growth of a population $y = y(t)$ is given by the logistic equation $y = \frac{1000}{1 + 999e^{-0.9t}}$ (a) What is the population at time $t = 0$? (b) What is the carrying capacity L ? (c) What is the constant k ? (d) When does the population reach 75% of the carrying capacity? (e) Find an initial-value problem whose solution is $y(t)$.	