

Work the following on notebook paper. Use your calculator only when necessary.

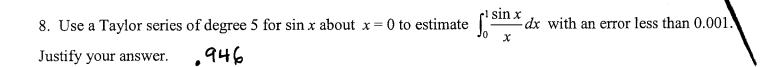
- $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n)!} \qquad \text{R.O.C} = \infty$ $\text{T.o.c.} (-\infty, \infty)$ 1. Find the radius and interval of convergence:
- 2. (a) Find the interval of convergence: $f(x) = \sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)^2}$.
 - (b) Write the first four nonzero terms and the general term for f'(x), and find its interval of convergence.

$$1 + \frac{\times}{2} + \frac{\times^{3}}{3} + \frac{\times^{3}}{4} + \dots + \frac{\times^{n}}{n+1} + \dots \qquad [-1,1]$$

- 3. (a) Find a power series for $f(x) = \frac{1}{1+x^2}$ centered at x = 0. Write the first four nonzero terms and the general term.
 - neral term. $x \frac{x^3}{31} + \frac{x^5}{5} \frac{x^7}{7} + \dots + \frac{(-1)^n x^{2n+1}}{2n+1} + \dots$ (b) Use your answer to (a) to find the first four nonzero terms and the general term for $g(x) = \arctan x$.

 (c) Use your answer to (b) to approximate $\arctan \frac{1}{3}$, using $R_N \le 0.001$. Justify your answer.

- rightharpoons For problems 4 5, write the first four nonzero terms and the general term.
 - 4. Maclaurin series for $f(x) = \sin(x^3)$ $\times 3 \frac{\times 9}{3!} + \frac{\times 15}{5!} \frac{\times^{21}}{7!} + \dots + \frac{(-1)^n (\chi^3)^{2n+1}}{(2n+1)!} + \dots$
 - 5. Power series for $g(x) = \frac{x}{1+2x}$ centered at x = 0 $x - 2x^{2} + 4x^{3} - 8x^{4} + ... + (-1)^{h} 2^{n} x^{n+1} + ...$
 - 6. Suppose f(x) is approximated near x = 0 by a fifth-degree Taylor polynomial $P_5(x) = 2x 5x^3 + 4x^5$. Give the value of:
 - (a) f''(0)480
 - 7. Use power series to evaluate $\lim_{x\to 0} \frac{e^x e^{-x}}{x}$.



- 9. The function f has derivatives of all orders for all real numbers x. Assume f(3) = -5, f'(3) = 2, f''(3) = -7, f'''(3) = 9.
- (a) Write the third-degree Taylor polynomial for f about x = 3, and use it to approximate f(2.6).
- $-5+2(x-3)-\frac{7}{21}(x-3)^2+\frac{9}{31}(x-3)^3$ -6.456 (b) The fourth derivative of f satisfies the inequality $|f^{(4)}(x)| \le 5$ for all x in the closed interval [2.6, 3]. Use the Lagrange error bound on the approximation to f(2.6) found in part (a) to explain whether or not f(2.6)e.b. = .005333 can equal -6. -6.456 ± eb.
- (c) Write the fourth-degree Taylor polynomial, Q(x), for $g(x) = f(x^2 + 3)$ about x = 0.

 (d) Use your answer to (c) to determine whether g has a relative maximum, a relative minimum, or neither at
- g'(x) = 0 $x = 0, \pm \sqrt{2/7}$ g' = 0 g' = 0 g' = 0x = 0. Justify your answer.
- 10. The Taylor series about x = 4 for a certain function f converges to f(x) for all x in the interval of convergence. The nth derivative of f at x = 4 is given by $f^{(n)}(4) = \frac{(-1)^n n!}{3^n (n+1)}$ for $n \ge 1$ and f(4) = 2.
- (a) Write the third-degree Taylor polynomial for f about x = 4. $2 \frac{1}{6} \left(x 4 \right) + \frac{1}{27} \left(x 4 \right)^2 \frac{1}{108} \left(x 4 \right)$
- (b) Find the radius of convergence.
- (c) Use the series found in (a) to approximate f(5) with an error less than 0.02.
- 11. Solve the equation y' = x + 2xy when y(0) = 1.
- 12. Evaluate: $\frac{d}{dt} \left(\int_{1}^{2t} \frac{1 \cos x}{x} dx \right)$
- 13. Find the slope of the tangent to the graph of $\ln y + e^x = y$.
- 14. Find the 4th-degree Taylor polynomial for $y = e^{\frac{1}{4}x}$, centered at x = 0. 16

- 15. Evaluate: $\int_{1}^{\infty} \frac{\ln x}{x} dx \qquad \text{div}$
- 16. Determine if the following series converge or diverge:
 - A. $\sum_{n=1}^{\infty} n^2$ div
 - B. $\sum_{n=1}^{\infty} \frac{2n^2-1}{n^2+1}$ d: V
 - C. $\sum_{n=1}^{\infty} \frac{kn^2}{n!}$, where k is a constant **ConV**
 - D. $\sum_{n=1}^{\infty} \frac{1}{n^2 3}$
 - E. $\sum_{n=1}^{\infty} (-1)^n \frac{1}{\ln n}$ Conv