Notes--Basic Derivative Rules

Taking derivatives is a a process that is vital in calculus. In order to take derivatives, there are rmles that will mak
the process simpler than having to nse the definition of the derivativ
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5. The power mle: It 7 is a rational munber then the Awction 17 is differentiable and —7[ 1 ] = "
I
Take the denvatives of the following. Use correct notation i
Ay r=ar [2)] /(\} =10 < .5(/) =7 dy r= {T: hod -
= Jox )= (x” 1y-30t"" e Lxhz )
AR x)= (X S y=gx ey
i » -

-1 -3 - -

et r=—= X £ ‘/(1)= b
RN

i 74
4 \
4y The constant multple mile: If fis a differentiable function and ris a real number, then —[( /( )] =¢ /7(\)
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S The sum and difference miles. The derivative of a s or difference is the sum or difference of the dervatves.

Take the derivatives of the tollowing. Use correct notation.
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Higher-order Derivatives SRV s )

Since the derivative of a function is also a function, we can take the derivative of it. This is called the second
derivative which is again a function. So we can take the derivative of it, and so on.

Higher Order Derivatives
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Example #1: For f(x) = 7x° —8x° +9x+6. find
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