Notes--Basic Derivative Rules

Taking derivatives is a a process that is vital in calculus. In order to take derivatives, there are rules that will mak the process simpler than having to use the definition of the derivative.

- The constant rule: The derivative of a constant function is 0. That is, if r is a real number, then $\frac{d}{dr}[c] = 0$.
 - a) y = 7
- c) s(t) = -8

- f(x) = 0
- $s'(t) = \bigcap$
- $\frac{dv}{dt} = C$
- 2. The single variable rule: The derivative of x is 1. $\frac{d}{dx}[x]=1$. This is consistent with the fact that the slope of the

- b) f(x) = x
- c) s(t) = t
 - s'(z) = 1
- 3. The power rule: If n is a rational number then the function x'' is differentiable and $\frac{\partial}{\partial x}[x''] = nx^{n-1}$.

Take the derivatives of the following. Use correct notation.

- a) $v = x^2$

- 9'= 2.x'
- $f'(x) = 6x^5$ $S'(t) = 30t^{29}$
- e) $y = \frac{1}{x} = X^{-1}$ f) $f(x) = \frac{1}{x^3} = X^{-3}$ g) $s(t) = \frac{1}{3/t} = \frac{1}{5}$ h) $y = \frac{1}{\sqrt{3/4}} = X^{-1}$

e)
$$F = \frac{1}{x} = X$$

$$y' = -1 \cdot x^{-2} = \frac{-1}{x^2} f'(x) = -3x^{-4} = \frac{-3}{x^+} S'(t) = -\frac{1}{3}t^{-\frac{1}{3}} = \frac{-1}{3t^{-\frac{1}{3}}} y' = -\frac{3}{4}x^{-\frac{1}{3}}$$

$$S'(t) = -\frac{1}{3}t^{-\frac{1}{3}}$$

- 4) The constant multiple rule: If f is a differentiable function and c is a real number, then $\frac{d}{dx}[cf(x)] = cf(x)$

Take the derivatives of the following. Use correct notation.

a)
$$y = \frac{2}{x^2} = \lambda \cdot X^{-2}$$
 b) $f(x) = \frac{4x^3}{3}$

$$b) \mathcal{I}(x) = \frac{4x^3}{3}$$

c)
$$s(t) = -t^5$$

d)
$$y = 4\sqrt{x} = 4X$$

$$y'=2^{-2}x^{-3}=\frac{-4}{x^3}$$
 $f'(x)=\frac{4}{3}\cdot 3x^2+4x^2$ $S'(t)=-1\cdot 5t^4=-5t^4$ $y'=4\cdot \frac{1}{2}x$

$$f'(x) = \frac{4}{3} \cdot 3x = 4x^{2}$$

$$0.4 \times \frac{1}{2}$$

e)
$$v = \frac{-5}{3x^3} = -\frac{5}{3} \times \frac{-3}{3}$$
 f) $f(x) = \frac{-5}{(3x)^3} = \frac{-5}{27x^3}$ g) $s(t) = \frac{4}{\sqrt{t}} = \frac{12}{110} + \frac{12}{3\sqrt{t^5}} = -\frac{12}{12} \times \frac{-5}{3}$

$$4^{\frac{1}{3}} = -\frac{5}{3} \cdot -3 \times -4$$

$$=-\frac{5}{27}$$
.X

$$\frac{3}{400} = \frac{3}{100}$$

$$f'(x) = \frac{-5}{27} \cdot 3x^{-4} = \frac{-2}{13/2}$$

$$=\frac{-2}{+\frac{3}{2}}$$

$$=\frac{20}{x^{8/3}}$$

5. The sum and difference rules. The derivative of a sum or difference is the sum or difference of the derivatives.

$$\frac{d}{dv}[f(x)+g(x)] = f'(x)+g'(x) \quad \text{and} \quad \frac{d}{dv}[f(x)-g(x)] = f'(x)-g'(x)$$
Take the derivatives of the following. Use correct notation.

a)
$$y = x^2 + 5x - 3$$

b) $f(x) = x^4 - \frac{3}{2}x^3 + 2x^2 + x - 6$
c) $y = \frac{4}{x} - \frac{4}{x^2} + \frac{4}{x^3} = \frac{4}{x^3} - \frac{4}{x^4} + \frac{4}{x^3} = \frac{4}{x^4} - \frac{4}{x^4} + \frac{4}{x^4} + \frac{4}{x^4} + \frac{4}{x^4} = \frac{4}{x^4} - \frac{4}{x^4} + \frac{4$

Higher-order Derivatives

Since the derivative of a function is also a function, we can take the derivative of it. This is called the second derivative which is again a function. So we can take the derivative of it, and so on.

Higher Order Derivatives		
Called	Prime Notation	Differential Notation
Original Function, or 0 th derivative	$y = f(x) = f^{(0)}(x)$	y = f(x)
1 st Derivative of f(x)	y'=f'(x)	$\frac{dy}{dx} = \frac{d}{dx} [y] = \frac{d}{dx} [f(x)]$
2^{nd} Derivative of $f(x)$	y"=f"(x)	$\frac{d^{2}y}{dx^{2}} = \frac{d^{2}}{dx^{2}} [y] = \frac{d^{2}}{dx^{2}} [f(x)]$
3^{rd} Derivative of $f(x)$	y''' = f'''(x)	$\frac{d^{3}y}{dx^{3}} = \frac{d^{3}}{dx^{3}} [y] = \frac{d^{3}}{dx^{3}} [f(x)]$
4^{th} Derivative of $f(x)$	$y^{(4)} = f^{(4)}(x)$	$\frac{d^{4}y}{dx^{4}} = \frac{d^{4}}{dx^{4}} [y] = \frac{d^{4}}{dx^{4}} [f(x)]$
5 th Derivative of f(x)	$y^{(5)} = f^{(5)}(x)$	$\frac{d^{5}y}{dx^{5}} = \frac{d^{5}}{dx^{5}} [y] = \frac{d^{5}}{dx^{5}} [f(x)]$
		•••
n th Derivative of f(x)	$y^{(n)} = f^{(n)}(x)$	$\frac{d^{n}y}{dx^{n}} = \frac{d^{n}}{dx^{n}} [y] = \frac{d^{n}}{dx^{n}} [f(x)]$

Example #1: For
$$f(x) = 7x^3 - 8x^2 + 9x + 6$$
, find

a) $f'(x)$
b) $f''(x)$
c) $f'''(x)$
d) $f^{(4)}(x) = 0$
e) $f^{(276)}(x) = 0$

$$f''(x) = 7 \cdot 3x^2 - 8 \cdot 2x^4 + 9 \cdot 1 + 0 \quad f''(x) = 21 \cdot 2x^4 - 16 \cdot 1 + 0 \quad f'''(x) = 42 \cdot 1 - 0 = 42$$

$$= 21 x^2 - 16x + 9$$

$$= 21 x^2 - 16x + 9$$

$$= 42x - 16$$
a) $f'(x)$
b) $f''(x)$

$$= 42x - 16$$

$$= 42x - 16$$