Notes -- Intro to Probability & The Counting Principle

Basic Probability

Things to Know . .

Tossing a 2-sided Coin

If you have multiple tosses, a tree diagram may help...

Selecting a Card from a Standard Deck

Standard Deck of 52 Playing Cards:

Diamonds (Red): 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • J • Q • K • A • Hearts (Red): 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • J • Q • K • A •

Clubs (Black): 2+3+4+5+6+7+8+9+10+J+Q+K+A+

Spades (Black): 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & Ja Qa Ka Aa

There are 52 cards in a standard deck with jokers removed.

There are 4 suits: Spades, Clubs, Hearts, Diamonds

There are 26 black cards, and 26 red cards.

Each suit has 13 cards, each of a different rank.

Face cards are Jacks, Queens, and Kings.
There are 10 face cards

in a deck.

1

Rolling a Standard Die

20000	000000000000000000000000000000000000000	
í		
ŧ		
1	•	
1	_	
1.		- 1
,	***************************************	und .
	1	

بمعدة فني	etroma w			
•	•			
	•			
demonstration of the same				
6				

	1	2	3	4	5	6
1	1,1,	1,2 ₃	1,3,	1,4,	1,5	1,6
2			2,3			
3	3,1	3,2	3,3	3,4	3,5	3,6
4	4,1	4,2	4,3,	4,4	4,5	4,6
5	5,1	5,2	5,3	5,4	5,5	5,6
6	6,1 _,	6,2	6,3	6,4	6,5	6,6

Basic Probability

probability of an event = $\frac{the \# of \ outcomes \ which \ make \ up \ the \ event}{the \ total \# of \ outcomes}$

Example 1 Roll a die. Find:

A. p(even #)
$$\frac{3}{6} = \frac{1}{2}$$

$$\frac{3}{6} = \frac{1}{2}$$

C.
$$p(zero)$$
 $\frac{Q}{6} = 0$

D. p(not 3)
$$\frac{5}{6}$$
 $(-p(3) = 1 - \frac{1}{6} = \frac{5}{6}$

Example 2 Toss a coin. Find:

A. p(head)
$$\frac{1}{2}$$

B. p(tails)
$$\frac{1}{2}$$

Example 3 Draw a card. Find:

A. p(heart)
$$\frac{13}{52} = \frac{1}{4}$$

B. p(black)
$$\frac{26}{52} = \frac{1}{2}$$

B. p(black)
$$\frac{26}{52} = \frac{1}{2}$$

C. p(not diamond) $\frac{39}{52} = \frac{3}{4}$ $|-p(diam.)| = |-\frac{13}{52}| = \frac{3}{4}$
D. p(red queen) $\frac{2}{52} = \frac{1}{26}$

E. p(face card)
$$\frac{13}{52} = \frac{3}{13}$$

The Fundamental Counting Principle

If task A can be completed in "a" ways, and task B can be completed in "b" ways, then task A followed by task B can be completed in a \cdot b ways.

outcome _--the result of a single trial

Sample space -- the set of all possible outcomes

Example 4 How many ways can a president and a secretary be chosen for a 4-member club? Assume the same person can't be both. Suppose the club members are Andy, Bill, Cathy, and Dawn.

AB AC	P 5 C A Sample C B sample C D Space	[12]
A B B B B B B B B B B B B B B B B B B B	D A D B D C	4.3=12

Example 5 How many outcomes are possible?

- a. You flip a coin. $\,\mathcal{L}\,$
- b. You flip a coin and roll a 6-sided die. $2 \cdot 6 = 12$
- c. You flip a coin, roll a die, and pick a card from a standard deck.

<u>Example 6</u> At dinner you must choose an appetizer, an entrée, and a dessert. Your choices are:

appetizer—salad, fruit, or cheese

entrée—chicken or steak

dessert—pie or cake

How many outcomes are possible? $3 \cdot 2 \cdot 2 = 12$

Example 7 A license plate is composed of 2 letters followed by 3 numbers followed by 2 letters. How many outcomes are possible?

Example 8 A license plate is composed of 2 letters followed by 3 numbers followed by 2 letters. You cannot repeat letters or numbers. How many outcomes are possible?

Example 9 A combination is composed of 3 digits. If you can repeat digits, how many combinations are possible?

Example 10 A combination is composed of 3 digits. If you cannot repeat digits, how many combinations are possible?