ICM Notes on Applications of Polynomials

reminders about how to use your calculator .

Enter Data in List

Press STAT button

Clear your list by highlighting CLRLLIST and ENTER

ClrList appears on your screen enter the list to be cleared separated by a comma then hit ENTER

Press STAT button

Make sure Edit is highlighted and press ENTER

You are now ready to enter your x values in one list and the matching y values in the other list

(remember which list you used to store your data)

To Graph the Data

Press STATPLOT enter 4 to turn off all plots. Hit ENTER

Press STATPLOT and make sure Plot 1 is highlighted press ENTER

Turn on the plot

Select the type of graph

Identify in which list you stored the x values

Identify in which list you stored the y values

Select the style of mark you want placed on the graph.

Press the GRAPH button. You should see discrete marks for each ordered pair of data.

To get the curve of best fit

Make sure that you have no equation in y1

Go to home screen and press CLEAR button

Press the STAT Button

Highlight CALC on the top row

Select the type of regression curve that best fits the contour of the data and ENTER.

Now name the lists that contain your data separated by commas. The values of the constants in the equation will appear on the home screen.

To Graph the curve of best fit on your data

Press Y= button

Make sure your cursor is were you want your equation

Press the VARS button

Go down to #5 Statistics

Highlight EQ on the top row


Make sure #1 RegEQ is highlighted and press ENTER

The equation will appear after y=

Press GRAPH button and the curve will be graphed on your data.

Note: If you want a measure of how well the curve fits the data, go to catalog button and go to "Diagnosis On." ENTER

Now when you do a curve of best fit, you will get a regression coefficient (an "r" value). The closer this value is to 1 the better the curve fits the data.

Example 1 Perform a linear regression on the data below. Predict the consumption for the year 2015. $\times = 35$

The U.S. consumption of aspirin (in billions) is given by the table below.

$$y = -8.62 \times +633.9$$

for 2015:
$$-8.62(35) + 633.9 = 332.2$$

Example 2 The population present in a bacteria culture over 5 days is given in the table below. Perform a cubic regression. Predict the population for day 7,

time (days)	0	1	2	3	4	5
population	30	133	214	337	527	819

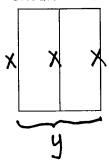
$$y = 51635 \times 3 = 23.603 \times ^2 + 114.858 \times + 31.230$$

Quadratics

Example 3 The number of bacteria in a refrigerated food is given by $n(t) = 20t^2 - 20t + 120$ for $-2 \le t \le 14$ where t is the temperature of the food in degrees Celsius. At what temperature will the number of bacteria be minimal?

$$t = \frac{-b}{2a} = \frac{-(-20)}{2(20)} = \underbrace{\frac{1}{2}^{\circ} C}_{2}$$

Example 4 The length of a rectangle is three more than twice the width. Determine the dimensions that will give a total area of 27 m^2 .


$$w = width$$
 $l = 2w + 3$

$$A = lw = (2w+3)w = 27$$

 $2w^2+3w-27=0$
 $(2w+9)(w-3)=0$

$$2w+9=0$$
 $w-3=0$ $w=3m$ $l=9m$

perimeter

Example 5 Two rectangular corrals are to be made from 100 yds of fencing as seen below. If the rancher wants the total area to be maximum, what dimensions should be used to make the corrals?

$$3x+2y = 100 A = 2y = 100-3x$$

$$y = \frac{100-3x}{2} = 50-\frac{3}{2}x$$

$$3x+2y=100$$
 $A = xy = x(50-\frac{3}{2}x)$
 $2y = 100-3x$ $A = 50x-\frac{3}{2}x^2$
 $y = \frac{100-3x}{2} = 50-\frac{3}{2}x$ $x = \frac{16\frac{2}{3}}{3}$ $x = \frac{416\frac{2}{3}}{3}$ $y = \frac{416\frac{2}{3}}{3}$ $y = \frac{416\frac{2}{3}}{3}$ $y = \frac{416\frac{2}{3}}{3}$ $y = \frac{416\frac{2}{3}}{3}$

The formula for a freely falling body ignoring any effects of air resistance is $s(t) = -16t^2 + v_0t + s_0$ feet

- s(t) represents the projectile's height at any time t
- vo represents initial velocity
- so represents intial height from which the projectile is released
- t represents time in seconds after the projectile is released

A baseball throwing machine is used to train little league players to Example 6 catch pop-ups. The machine throws baseballs straight upward with an initial velocity of 48 ft/sec from a height of 3.5 feet.

- a) Find an equation that models the height of the ball as a function of the ball tseconds after it is thrown. $S(t) = -16t^2 + 48t + 3.5$
- b) What is the maximum height the ball will reach? How many seconds will it take to reach this height? t = 1.5 sec \$39.5 ft

 c) If the player misses the catch, how long will it take the ball to hit the
- ground? ht = 0 + = 3.07| sec