You should be able to . . .

 Apply theorems such as the Intermediate Value Theorem, Mean Value Theorem, and Rolle's Theorem

IVT - Intermediate Value Theorem

a number between f(a) and f(b),

What it says. If f is continuous on the closed interval [a, b] and k is a number between f(a) and f(b), then there is at least one number c in [a, b] such that f(c) = k.

What it means: If f is continuous between two points, and f(a) = j and f(b) = k, then for any c between a and b, f(c) will take on a value between j and k.

When to use it. Use to prove that a particular intermediate y value when you know two other y values on a continuous function.

Ex 1) Show that $p(x) = 2x^3 - 5x^2 - 10x + 5$ has a root in the interval [-1, 2].

P(x) is cont. over [-1,2] -- polynom. are cont. p(-1) = -2-5+10+5=8

$$p(-1) = -2 - 3 + 0 + 3 = 8$$

 $p(2) = 16 - 20 - 20 + 5 = -19$

 $-19 < 0 < 8 \Rightarrow$ there's an x-value in [-1,2] where f(c) = 0 by the

MVT - Mean Value Theorem

IVT

What it says: If f is continuous on the closed interval [a, b] and differentiable on the open interval

(a, b), then there exists a number c in (a, b) such that $f'(c) = \frac{f(b) - f(a)}{b - a}$. \leftarrow difference quotient

Slope of tangent = 5 lope of seant What it means: Given two points a and b, the slope between those points will be attained as an instantaneous slope (i.e. a derivative) by some point c that is between a and b.

When to use it. To prove that the slope between to distinct points on the graph will equal the derivative of the function at some point x between a and b. f(a)

Ex 2) Apply the MVT: $f(x) = x - \cos(x)$ over the interval $[0, 2\pi]$.

$$f'(x) = 1 + \sin x$$

$$f(0) = 0 - \cos(0) = -1$$

 $f(2\pi) = 2\pi - \cos(2\pi) = 2\pi - 1$

$$1+\sin x = \frac{2\pi-1-(-1)}{2\pi-0}=1$$

$$Sinx = 0$$

$$x = Sin^{-1}(0)$$

$$x = 0 = 13$$

Ex 3) Apply the MVT:
$$f(x) = x^3 - x^2$$
 over the interval $[-4,4]$.

f (ont on $[-4,4]$? \nearrow mVT applies

 $f'(x) = 3x^2 - 2x$

$$f(-4) = -64 - 16 = -80$$

 $f(4) = 64 - 16 = 48$

$$3x^{2}-2x = 48 - 80 = 16$$

$$4 - 4$$

$$3x^{2}-2x - 16 = 0$$

$$(3x - 8)(x + 2) = 0$$

Ex 4) Explain why the MVT does not apply to $f(x) = x^{\frac{2}{3}}$ over the interval $\begin{bmatrix} x = 8/3 & x = -2 \\ -8,1 \end{bmatrix}$.

not diff on
$$(-8,1)$$
 at $x=0$ $f'(x) = \frac{2}{3}x^{-\frac{1}{3}} = \frac{2}{33x}$
mut doesn't apply

Rolle's Theorem

What it says. Let f be continuous on the closed interval [a, b] and differentiable on the open interval (a, b). If f(a) = f(b), then there is at least one number c in (a, b) such that f'(c) = 0.

What it means: If a function has two places, a and b, where the y values are the same, then there will be a horizontal tangent somewhere between a and b.

When to use it. Use it the same way as the MVT. You could also apply it to prove a theoretical max or min between two x values if you can't actually see the graph.

Ex 5) Apply Rolle's Theorem to $f(x) = \sin x$ over the interval $[0, 2\pi]$.

cont on
$$[0,2\pi]$$
?

diff on $(0,2\pi)$?

 $P(0) = f(2\pi)$

Sino $Sin(2\pi)$
 $P(0) = f(2\pi)$
 $P(0) =$