AP Calculus BC

Notes: Improper Integrals

Consider the infinite region that lies under the curve $y=e^{-x}$ in the first quadrant. If you were asked to find this area, what would you say? We will see that this area is actually finite.

Millian

There are 2 types of improper integrals.

Type #1:

- At least one of the limits of integration is infinite
- Interval is not bounded
- To evaluate these types of improper integrals we will use the following formulas:
- 1. If f(x) is continuous on $[a, \infty)$, then

$$\int_{a}^{\infty} f(x)dx = \lim_{b \to \infty} \int_{a}^{b} f(x)dx$$

2. If f(x) is continuous on $(-\infty, b]$, then

$$\int_{-\infty}^{b} f(x)dx = \lim_{a \to -\infty} \int_{a}^{b} f(x)dx$$

3. If f(x) is continuous on $(-\infty, \infty)$, then

$$\int_{-\infty}^{\infty} f(x)dx = \int_{-\infty}^{c} f(x)dx + \int_{c}^{\infty} f(x)dx$$

Where c is any real number.

Important!! Learn and Memorize!!

In formulas 1 & 2: If the limit is finite, the improper integral *converges* and the limit is the value of the improper integral. If the limit fails to exist (is infinite), the improper integral *diverges*.

<u>In formula 3:</u> Both integrals must converge (have finite limits) in order for the improper integral to converge. Otherwise, the integral diverges.

1)
$$\int_{1}^{\infty} \frac{1}{x^{2}} dx = \lim_{b \to \infty} \int_{1}^{b} \frac{1}{x^{2}} dx = \lim_{b \to \infty} \left[-1x + c \right]_{1}^{b}$$

$$= \lim_{b \to \infty} \left[\frac{-1}{b} + c - \left(-1 + c \right) \right] = \lim_{b \to \infty} \left[\frac{-1}{b} + i \right]_{2}^{b}$$

$$= \lim_{b \to \infty} \left[\frac{-1}{b} + c - \left(-1 + c \right) \right] = \lim_{b \to \infty} \left[\frac{-1}{b} + i \right]_{2}^{b}$$

$$= \lim_{b \to \infty} \left[\frac{-1}{b} + c - \left(-1 + c \right) \right] = \lim_{b \to \infty} \left[\frac{-1}{b} + i \right]_{2}^{b}$$

Ex3)
$$\int_0^\infty e^{-x} dx = \lim_{b \to \infty} \int_0^b e^{-x} dx$$

$$= \lim_{b \to \infty} \left[-e^{-x} + C \right]_0^b - \int_0^b e^{-x} dx = -e^{-x} + C$$

$$= \lim_{b \to \infty} \left[-e^{-x} + C \right]_0^b - \int_0^b e^{-x} dx = -e^{-x} + C$$

$$= \lim_{b \to \infty} \left[-e^{-x} + C \right]_0^b - \left[-e^{-x} + C \right]_0^b$$

Ex4)
$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx = \int_{-\infty}^{0} \frac{1}{1+x^2} dx + \int_{0}^{\infty} \frac{1}{1+x^2} dx$$

$$= \lim_{\Delta \to -\infty} \int_{0}^{0} \frac{1}{1+x^2} dx + \lim_{\Delta \to \infty} \int_{0}^{b} \frac{1}{1+x^2} dx$$

$$= \lim_{\Delta \to -\infty} \int_{0}^{\infty} \frac{1}{1+x^2} dx + \lim_{\Delta \to \infty} \int_{0}^{b} \frac{1}{1+x^2} dx$$

$$= \lim_{\Delta \to -\infty} \int_{0}^{\infty} \frac{1}{1+x^2} dx + \lim_{\Delta \to \infty} \int_{0}^{b} \frac{1}{1+x^2} dx$$

$$= \lim_{\Delta \to -\infty} \int_{0}^{\infty} \frac{1}{1+x^2} dx + \lim_{\Delta \to \infty} \int_{0}^{b} \frac{1}{1+x^2} dx$$

$$= \lim_{\Delta \to -\infty} \int_{0}^{\infty} \frac{1}{1+x^2} dx + \lim_{\Delta \to \infty} \int_{0}^{b} \frac{1}{1+x^2} dx$$

$$= \lim_{\Delta \to -\infty} \int_{0}^{\infty} \frac{1}{1+x^2} dx + \lim_{\Delta \to \infty} \int_{0}^{b} \frac{1}{1+x^2} dx$$

$$= \lim_{\Delta \to -\infty} \int_{0}^{\infty} \frac{1}{1+x^2} dx + \lim_{\Delta \to \infty} \int_{0}^{b} \frac{1}{1+x^2} dx$$

$$= \lim_{\Delta \to -\infty} \int_{0}^{\infty} \frac{1}{1+x^2} dx + \lim_{\Delta \to \infty} \int_{0}^{b} \frac{1}{1+x^2} dx$$

$$= \lim_{\Delta \to -\infty} \int_{0}^{\infty} \frac{1}{1+x^2} dx + \lim_{\Delta \to \infty} \int_{0}^{b} \frac{1}{1+x^2} dx$$

$$= \lim_{\Delta \to -\infty} \int_{0}^{\infty} \frac{1}{1+x^2} dx + \lim_{\Delta \to \infty} \int_{0}^{b} \frac{1}{1+x^2} dx$$

$$= \lim_{\Delta \to -\infty} \int_{0}^{\infty} \frac{1}{1+x^2} dx + \lim_{\Delta \to \infty} \int_{0}^{b} \frac{1}{1+x^2} dx$$

$$= \lim_{\Delta \to -\infty} \int_{0}^{\infty} \frac{1}{1+x^2} dx + \lim_{\Delta \to \infty} \int_{0}^{b} \frac{1}{1+x^2} dx$$

$$= \lim_{\Delta \to -\infty} \int_{0}^{\infty} \frac{1}{1+x^2} dx + \lim_{\Delta \to \infty} \int_{0}^{b} \frac{1}{1+x^2} dx$$

$$= \lim_{\Delta \to -\infty} \int_{0}^{\infty} \frac{1}{1+x^2} dx + \lim_{\Delta \to \infty} \int_{0}^{b} \frac{1}{1+x^2} dx$$

$$= \lim_{\Delta \to -\infty} \int_{0}^{\infty} \frac{1}{1+x^2} dx + \lim_{\Delta \to \infty} \int_{0}^{b} \frac{1}{1+x^2} dx$$

$$= \lim_{\Delta \to -\infty} \int_{0}^{\infty} \frac{1}{1+x^2} dx + \lim_{\Delta \to \infty} \int_{0}^{\infty} \frac{1}{1+x^2} dx$$

$$= \lim_{\Delta \to -\infty} \int_{0}^{\infty} \frac{1}{1+x^2} dx + \lim_{\Delta \to \infty} \int_{0}^{\infty} \frac{1}{1+x^2} dx$$

$$= \lim_{\Delta \to -\infty} \int_{0}^{\infty} \frac{1}{1+x^2} dx + \lim_{\Delta \to \infty} \int_{0}^{\infty} \frac{1}{1+x^2} dx$$

$$= \lim_{\Delta \to -\infty} \int_{0}^{\infty} \frac{1}{1+x^2} dx + \lim_{\Delta \to \infty} \int_{0}^{\infty} \frac{1}{1+x^2} dx$$

$$= \lim_{\Delta \to -\infty} \int_{0}^{\infty} \frac{1}{1+x^2} dx + \lim_{\Delta \to \infty} \int_{0}^{\infty} \frac{1}{1+x^2} dx$$

$$= \lim_{\Delta \to \infty} \int_{0}^{\infty} \frac{1}{1+x^2} dx + \lim_{\Delta \to \infty} \int_{0}^{\infty} \frac{1$$

Type #2: $\int_a^b f(x) dx$ where f(x) has a point of discontinuity.

- Finite limits of integration
- Function is not bounded
- Function is discontinuous
- To evaluate these types of improper integrals we will use the following formulas:
 - 1. If f(x) is continuous on [a,b) and has infinite discontinuity at b, then $\int_{a}^{b} f(x)dx = \lim_{c \to b^{-}} \int_{a}^{c} f(x)dx$
 - 2. If f(x) is continuous on (a, b], and has infinite discontinuity at a, then $\int_{a}^{b} f(x)dx = \lim_{c \to a^{+}} \int_{c}^{b} f(x)dx$
 - 3. If f(x) is continuous on $[a, c) \cup (c, b]$ at which f has infinite discontinuity at c, then

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

The same rules of convergence and divergence as before apply to these formulas.

Ex 5)
$$\int_0^1 \frac{dx}{\sqrt[3]{x}}$$
 discont at $x=0$

$$\lim_{C \to 0^+} \int_C^1 \frac{dx}{\sqrt[3]{x}} = \lim_{C \to 0^+} \left[\frac{3}{2} \frac{2}{3} \frac{1}{3} \right] = \lim_{C \to 0^+} \left[\frac{3}{2} \frac{2}{3} \frac{1}{3} \right] = \frac{3}{2} - 0 = \frac{3}{2}$$
 converges

Ex 6)
$$\int_{-2}^{0} \frac{1}{x^3} dx$$
 discont. at $x = 0$

$$\lim_{C \neq 0^{-}} \int_{-2}^{0} \frac{1}{x^3} dx$$

$$= \lim_{C \neq 0^{-}} \left[-\frac{1}{2} x^{-2} + \frac{1}{2} x + \frac{1}{2}$$

$$\lim_{c \to 0^{-}} \int_{-2}^{c} \frac{dx}{x^{3}} + \lim_{c \to 0^{+}} \int_{c}^{1} \frac{dx}{x^{3}} = \boxed{\text{diverges}}$$