<u>Logistic growth functions</u>—functions that model situations where exponential growth is limited.

- Form: $p(t) = \frac{c}{1+ae^{-bt}}$ where a, b, and c are constants with c > 0 and b > 0.
- > c is the <u>Carrying Capacity</u> because the value of p(t) approaches c as t approaches infinity $\lim_{t \to c} p(t) = c$
- The graph of a logistic function looks like an exponential function at first, but then it levels off at y = c. The logistic function has two horizontal asymptotes: y = 0 and y = c. Logistic Curve

Example 1 The number of students infected with flu after t days at Holly Springs High School

is modeled by the following function: $p(t) = \frac{1600}{1+99e^{-0.4t}}$

a) What was the initial number of infected students?

p(0) = \frac{1600}{14992-160} = \frac{1600}{1600} = \frac{1600}{16

- be infected? carrying capacity = 1600
- d) According to the model, when will the number of students infected be 800?

1590

1000

500

Find a logistic equation of the form $y = \frac{c}{1+ae^{-bt}}$ that fits the given graph, if the y-Example 2

intercept is 5 and the point (24, 135) is on the curve. (6,5)

A horrible rumor begins to spread within HSHS. Lilly, Tucker, and Carter begin telling people that "Ms. Powell does not have any friends and lives a boring life". After t days, the number of persons who have heard this rumor is modeled by the logistic function

$$R(t) = \frac{2000}{1 + 115e^{-0.97t}}.$$

- a) How many people on campus originally heard the rumor? Round to the nearest whole person.

 R(0) = 2000 = 17 people

 b) To the nearest whole person, find the number of people who have heard the rumor after 1 R(1) = 44 people R(2) = 114 people R(5) = 1052 people day, after 2 days, and after 5 days.
- c) How many people have heard the rumor when the rumor is growing the fastest? On which day did this occur? $\frac{1}{2}(200) = 1000$ people; 1000 = 2000 $\frac{1}{1+115e^{-1.7+}}$ $\frac{1}{2} = 4.892$ d) Describe the end behavior of the graph. What does this mean in terms of the rumor? on 5^{+h} day

Example 4 (modeling data with a logistic function) The data in the table represents the amount of yeast biomass present after t hours in a culture.

Time (in hours)	Yeast Biomass	Time (in hours)	Yeast Biomass
0	9.6	10	513.3
1	18.3	11	559.7
2	29.0	12	594.8
3	47.2	13	629.4
4	71.1	14	640.8
5	119.1	1 5	651.1
6	174.6	16	655.9
7	257.3	17	659.6
8	350.7	18	661.8
g	441.0		

- $y = \frac{663,022}{1+71.57600-3547}$ a) Find a logistic model for the data.
- b) What is the predicted carrying capacity of the culture? 663.022
- c) Predict the population of the culture at 20 hours. P(20) = 662.181