You should be able to . . .

- Find the area between 2 functions or the area of a polar graph.
- Find the volume of a solid of revolution using the disk, washer, or shell method.

OR

- Find the volume of a solid in a plane using the cross-section method.
- Find the arc length of a function, parametric curve, or polar graph.

<u>AREA</u>	top_	pottom	
$A = \int_{a}^{b} \left(1 \right)^{a}$	upper unction	$-\left(\begin{array}{c} \text{lower} \\ \text{function} \end{array}\right) dx,$	$a \le x \le b$

$$A = \int_{c}^{d} {\text{right} \atop \text{function}} - {\text{left} \atop \text{function}} dy, \qquad c \le y \le d$$

Example: Determine the area of the region enclosed by $y = x^2$ and $y = \sqrt{x}$.

Example: Find the area of one petal for $r = 2\sin 4\theta$

$$2 \sin 4\theta = 0$$

 $\sin 4\theta = 0$
 $4\theta = \sin^{2}(\theta)$

$$\int_{0}^{\pi/4} \frac{1}{2} \left(2 \sin 4\theta \right)^{2} d\theta$$

 $4\theta = 0$, π , 2π , etc. $\theta = 0$, $\frac{\pi}{4}$, $\frac{\pi}{2}$, etc. Example: The figure below shows the graphs of $r = 6\sin\theta$ and $r = 3 + 3\cos\theta$ for $0 \le \theta \le 2\pi$.

- a) Set up an equation to find the value of θ for the intersection(s) of both graphs. Find the polar coordinates of the point(s) of intersection.
 - b) Set up an expression with two or more integrals to find the area common to both curves.

a)
$$6 \sin \theta = 3 + 3 \cos \theta$$
 (r, θ) $\theta = 0.92729522$, TT $(0, \pi)$ $(4.8, .927)$

b) $\frac{1}{2} \int_{.927}^{.77} (3 + 3 \cos \theta)^2 d\theta$ $\pi = \frac{13.33301533}{2} = 6.66650746$
 $\frac{1}{2} \int_{.927}^{.927} (6 \sin \theta)^2 d\theta = 4.025656985$

Volume: Washer Method $V = \int_{0}^{b} \pi \left\{ \left[f(x) \right]^{2} - \left[g(x) \right]^{2} \right\} dx$ Volume: Disk Method $V = \int_{0}^{1} \pi \left[f(x) \right]^{2} dx$ Example 1 Determine the volume of the solid obtained by rotating the region bounded by $\underline{v} = x^2 - 4x + 5$, x = 1, x = 4, and the x-axis about the x-axis. $\pi \int_{-1}^{4} (x^2 - 4x + 5) dx$

Example 2 Determine the volume of the solid obtained by rotating the portion of the region

bounded by $y = \sqrt[3]{x}$ and $y = \frac{x}{1}$ that lies in the first quadrant about the y-axis.

 $y = x^2 - 2x$ and y = x about the line y = 4 $x^2 - 2x = 0$ X(x-2)=0X=0, X=2 $x^{2}-2x=X$ $x^{2}-3x=0$ x(x-3)=0

Example: Given the region in the first quadrant bounded by $y = 2x^2 - x^3$ and y = 0. Find the volume of the solid formed when the region is revolved the y-axis.

 $V = \int_{a}^{b} A(x) dx$ $V = \int_{-\infty}^{d} A(y) dy$ Volume by Cross-Sections

Example 4: The base of a solid is a region in the first quadrant bounded by the x-axis, the y-axis, and the line x+2y=8. If the known cross sections of the solid perpendicular to the x-axis are semicircles, what is the volume of the solid?

of the solid?

$$y = -\frac{1}{2}x + 4$$

$$y = -\frac{1}{2}x$$

Arc Length

Function	$L = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$	
Parametric equations	$L = \int_{\alpha}^{\beta} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$	
Polar	$L = \int_{a}^{b} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} \ d\theta$	

Example: (Calculator Permitted) Which of the following gives the best approximation of the length of the arc of

$$y = \cos(2x) \text{ from } x = 0 \text{ to } x = \frac{\pi}{4}?$$
(A) 0.785 (B) 0.955 (C) 1.0
(D) 1.318 (E) 1.975

Example: (no calculator)

Determine the length of the parametric curve given by the following parametric equations.

$$x = 3\sin(t)$$

$$y = 3\cos(t)$$

$$0 \le \theta \le 2\pi$$

$$\int_{0}^{2\pi} \sqrt{\left(3\cos^{2}t\right)^{2} + \left(-3\sin^{2}t\right)^{2}} dt = \int_{0}^{2\pi} \sqrt{9\cos^{2}t + 9\sin^{2}t} dt$$

$$= \int_{0}^{2\pi} 3 dt = 3t + C \Big|_{0}^{2\pi} - G$$
Example: (no calculator)

Write down an integral expression for the length of the curve $r = \sin \theta + \theta$ for $0 \le \theta \le \pi$ but do not compute the integral.

$$\int_{0}^{\pi} \sqrt{\left(\sin\theta + \theta\right)^{2} + \left(\cos\theta + 1\right)^{2}} d\theta \frac{dr}{d\theta} = \cos\theta + 1$$