AP Calculus AB Unit #3 Notes
Applications of Derivatives: Important Theorems

Mean Value Theorem
If the function f is continuous on the ¢
(a, b), then there exists at least

d interval [a, b] and differentiable on the open interval
fe number cjin the open interval (a, b) such that:
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Example #1: 7 F s : K= —
If the function fis defined on [1, 3] by f(x) = 4 ~3/x,_show that the MVT can be applied to
f and find a number ¢ which satisfies the conclusion —3x"!
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Sketch a graph of the function f if f(x) = {I
Show that f fails to satisfy the MVT on the interval [-2, 2].
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Example #3:
Suppose that s(t) = > — { + 4 is the position of the motion of a particle moving along a
_ line. 5’ (%): 2t- |
a) Explain why the function s satisfies the hypothesis of the MVT.
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n {0, 3] where instantaneous velocity is equal to the average velocity.
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Rolle’s Theorem
o Letfbe a function that satisfies the following three hypotheses:
/ 1A 1. fis continuous on the closed interval [a, b]
2. fis differentiable on the open interval (a, b)
» 3. f(a) = f(b)
Then there is a number cin (a, b) such that f(c) = 0.
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Example #4:
Verify the function satisfies the three hypotheses of Rolle’s Theorem on the given interval.
Then find all numbers ¢ that satisfy the conclusion of Rolle’s Theorem.
a) f(x) =x2—4x + 1, [0, 4]
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1 2 b) f(x) = sin(2mx), [1, 1] 210os(2me) = O o< 2rx < 2
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Example #5: 2= 4 /)4 P 3 =
Let f(x) = 1 x25. Show that f(-1) = (1) but there is no number ¢ in'(-1, 1PsuchthatF(c) = o
Why does this contradict Rolle’s Theorem? 2 2y
n _t Y
‘ 2/ ? (X) = 3 X
= = @)?-1-1=0
. T 94 -2 =0
£O0) = 1-W*. 1 =0 — T
3IX
ne <oln .

1E(‘><>»"S' rot A X x=0 | |
= T is hoet &€ own (“")‘) [ P S
" \ . o

;’\HAL( o S §



N

Intermediate Value Theorem “ﬁ ,

If f is a continuous function on the closed interval [a, b], with f(a) # f(b), aank/is a number
between f(a) and f(b), then there exists at least one numbszéjn (a, b) for which f(c) = k.
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Example #6 Wy
' Use the Intermediate Value Theorem to show that there is {zero/for the given function in the

specified interval. =
a) f(x)=x3-3x+1, [0, 1]
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