1989 AB3 Solution

(a)
$$v(t) = \int 4\cos 2t \, dt$$

 $v(t) = 2\sin 2t + C$
 $v(0) = 1 \Rightarrow C = 1$
 $v(t) = 2\sin 2t + 1$

(b)
$$x(t) = \int 2\sin 2t + 1 dt$$

 $x(t) = -\cos 2t + t + C$
 $x(0) = 0 \Rightarrow C = 1$
 $x(t) = -\cos 2t + t + 1$

(c)
$$2\sin 2t + 1 = 0$$

 $\sin 2t = -\frac{1}{2}$
 $2t = \frac{7\pi}{6}, \frac{11\pi}{6}$
 $t = \frac{7\pi}{12}, \frac{11\pi}{12}$

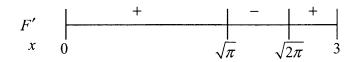
(a)
$$F(1) = \int_0^1 \sin(t^2) dt$$

$$\approx \frac{(1-0)}{4} \cdot \frac{1}{2} \cdot \left[\sin 0^2 + 2 \sin\left(\frac{1}{4}\right)^2 + 2 \sin\left(\frac{1}{2}\right)^2 + 2 \sin\left(\frac{3}{4}\right)^2 + \sin 1^2 \right]$$

$$\approx 0.316$$

(b)
$$F'(x) = \sin(x^2)$$

 $F'(x) = 0 \text{ when } x^2 = 0, \pi, 2\pi, ...$
 $x = 0, \sqrt{\pi}, \sqrt{2\pi}$



F is increasing on $\left[0,\sqrt{\pi}\right]$ and on $\left[\sqrt{2\pi},3\right]$

(c)
$$k = \frac{F(3) - F(1)}{2} = \frac{\int_{1}^{3} \sin(t^{2}) dt}{2}$$
$$\int_{1}^{3} \sin(t^{2}) dt = 2k$$

AP® CALCULUS AB 2008 SCORING GUIDELINES

Question 2

t (hours)	0	1	3	4	7	8	9
L(t) (people)	120	156	176	126	150	80	0

Concert tickets went on sale at noon (t = 0) and were sold out within 9 hours. The number of people waiting in line to purchase tickets at time t is modeled by a twice-differentiable function L for $0 \le t \le 9$. Values of L(t) at various times t are shown in the table above.

- (a) Use the data in the table to estimate the rate at which the number of people waiting in line was changing at 5:30 P.M. (t = 5.5). Show the computations that lead to your answer. Indicate units of measure.
- (b) Use a trapezoidal sum with three subintervals to estimate the average number of people waiting in line during the first 4 hours that tickets were on sale.
- (c) For $0 \le t \le 9$, what is the fewest number of times at which L'(t) must equal 0? Give a reason for your answer.
- (d) The rate at which tickets were sold for $0 \le t \le 9$ is modeled by $r(t) = 550te^{-t/2}$ tickets per hour. Based on the model, how many tickets were sold by 3 P.M. (t = 3), to the nearest whole number?

(a)
$$L'(5.5) \approx \frac{L(7) - L(4)}{7 - 4} = \frac{150 - 126}{3} = 8$$
 people per hour

(b) The average number of people waiting in line during the first 4 hours is approximately

$$\frac{1}{4} \left(\frac{L(0) + L(1)}{2} (1 - 0) + \frac{L(1) + L(3)}{2} (3 - 1) + \frac{L(3) + L(4)}{2} (4 - 3) \right)$$
= 155.25 people

(c) L is differentiable on [0, 9] so the Mean Value Theorem implies L'(t) > 0 for some t in (1, 3) and some t in (4, 7). Similarly, L'(t) < 0 for some t in (3, 4) and some t in (7, 8). Then, since L' is continuous on [0, 9], the Intermediate Value Theorem implies that L'(t) = 0 for at least three values of t in [0, 9].

OR

The continuity of L on [1, 4] implies that L attains a maximum value there. Since L(3) > L(1) and L(3) > L(4), this maximum occurs on (1, 4). Similarly, L attains a minimum on (3, 7) and a maximum on (4, 8). L is differentiable, so L'(t) = 0 at each relative extreme point on (0, 9). Therefore L'(t) = 0 for at least three values of t in [0, 9].

[Note: There is a function L that satisfies the given conditions with L'(t) = 0 for exactly three values of t.]

(d)
$$\int_0^3 r(t) dt = 972.784$$

There were approximately 973 tickets sold by 3 P.M.

$$2: \begin{cases} 1 : estimate \\ 1 : units \end{cases}$$

$$2: \begin{cases} 1 : \text{trapezoidal sum} \\ 1 : \text{answer} \end{cases}$$

3:
$$\begin{cases} 1 : \text{considers change in} \\ \text{sign of } L' \\ 1 : \text{analysis} \\ 1 : \text{conclusion} \end{cases}$$

OR

3:
$$\begin{cases} 1 : \text{considers relative extrema} \\ \text{of } L \text{ on } (0, 9) \\ 1 : \text{analysis} \\ 1 : \text{conclusion} \end{cases}$$

$$2: \begin{cases} 1 : integrand \\ 1 : limits and answer \end{cases}$$