Review for Unit 4 Test

1 For $0 \le t \le 13$, an object travels along an elliptical path given parametrically by $\begin{cases} x = 3\cos t \\ y = 4\sin t \end{cases}$. At the point at which

t=13, the object leaves the path and travels along the line tangent to the path at that point. What is the slope of the line on which the object travels?

$$a - \frac{4}{3}$$

$$b - \frac{3}{4}$$

$$c = -\frac{4\tan 1}{3}$$

a
$$-\frac{4}{3}$$
 b $-\frac{3}{4}$ c $-\frac{4 \tan 13}{3}$ d $-\frac{4}{3 \tan 13}$ e $-\frac{3}{4 \tan 13}$

$$e = \frac{3}{4\tan 13}$$

2 The position of a particle moving in the xy-plane is given by the parametric equations $\begin{cases} x = t^3 - 3t^2 \\ y = 2t^3 - 3t^2 - 12t \end{cases}$. For what

values of t is the particle at rest?

$$\binom{c}{c}$$
 2 only

b 0 only
$$\binom{c}{2}$$
 only $\binom{d}{d} - 1$ and 2 only $\binom{e}{d} - 1$, 0, and 2

3 A curve C is defined by the parametric equations $\begin{cases} x = t^2 - 4t + 1 \\ y = t^3 \end{cases}$. Which of the following is an equation of the line

tangent to the graph of C at the point (-3,8)?

b
$$x = 2$$

$$c y = 8$$

b
$$x=2$$
 c $y=8$ d $y=-\frac{27}{10}(x+3)+8$ e $y=12(x+3)+8$

4 A particle moves so that its position at time t is given by $\begin{cases} x = t^2 \\ y = \sin(4t) \end{cases}$. What is the speed of the particle when t = 3? $a - 8\sin 12 \qquad b \frac{4\cos 12}{6} \qquad (c) \sqrt{(4\cos 12)^2 + 36} \qquad d \sqrt{(\sin 12)^2 + 81} \qquad e (4\cos 12)^2 + 36$

$$b \frac{4\cos 12}{6}$$

$$\left(c\right)\sqrt{\left(4\cos 12\right)^2+36}$$

$$d \sqrt{\left(\sin 12\right)^2 + 81}$$

$$e (4\cos 12)^2 + 36$$

5 Which of the following integrals represents the area shaded in the graph shown at right? The curve is given by $r = 4 \sin 2\theta$.

a
$$\int_{3\pi/2}^{2\pi} 2\sin(2\theta)d\theta$$
 b $\int_{\pi/2}^{\pi} 8\sin^2(2\theta)d\theta$ c $\int_0^{\pi} 2\sin^2(2\theta)d\theta$

$$c \int_0^{\pi} 2\sin^2(2\theta)d\theta$$

$$d \int_{\pi/2}^{\pi} 2\sin(2\theta) d\theta e \int_{3\pi/2}^{2\pi} 4\sin^2(2\theta) d\theta$$

6 Which of the following integrals represents the arc length of the polar

$$\int_0^{\pi} \sqrt{1 + \sin^2 \theta} d\theta$$

$$e \int_0^{\pi} 2\pi (1+\cos\theta)\sin\theta \sqrt{(1+\cos\theta)^2+(-\sin\theta)^2} d\theta$$

7 Consider the graph of the vector function $\mathbf{r}(t) = \langle 1 + t^3, 3 + 4t \rangle$. What is the value of $\frac{d^2y}{dx^2}$ at the point on the graph where x = 2?

- b $\frac{4}{3}$ $c \frac{8}{3}$ $\binom{d}{-\frac{8}{9}}$ $e \frac{1}{18}$

8 A particle proves so that at time t > 0 its position vector is $\langle \ln(t^2 + 2t), 2t^2 \rangle$. At time t = 2, its velocity vector is

- b $\langle \frac{3}{4}, 4 \rangle$ c $\langle \frac{1}{8}, 8 \rangle$ d $\langle \frac{1}{8}, 4 \rangle$ e $\langle -\frac{5}{16}, 4 \rangle$

х

9 Consider the curves $r_1 = 2\cos\theta$ and $r_2 = \sqrt{3}$.

- a Sketch the curves on the axes provided at right.
- b Show use of calculus to find the area of the region common to 2.799 both graphs.

- a In terms of t, find $\frac{dx}{dx}$.

 b Write an equation for the line tangent to the curve at the point at which t=-1.

 c Find the x- and y-coordinates for each critical point on the curve
- and identify each point as having a vertical or horizontal tangent.

(Hint: rewrite the curve in rectangular coordinates, then find its asymptotes.)

(A)
$$x = 0, y = 0$$

11.

(B)
$$x = 0$$
 only

(D)
$$x = -1$$
 only

(E)
$$x = 0, y = 1$$

(C)
$$x = -1, y = 0$$

CALCULATOR-ACTIVE

12 An object moving along a curve in the xy-plane has position (x(t), y(t)) at time $t \ge 0$ with $\frac{dx}{dt} = 12t - 3t^2$ and

 $\frac{dy}{dt} = \ln(1+(t-4)^4)$. At time t=0, the object is at position (-13,5). At time t=2, the object is at point P with xcoordinate 3.

- a Find the acceleration vector and the speed at time t=2, $\langle e \rangle = 1.8827 + 12.337$
- b Find the y-coordinate of point $P_1 = 13$. (c. 7) c Write an equation for the line tangent to the curve at point $P_2 = 43$. (c. 7) = 236. (x-3)
- d For what value(s) of t, if any, is the object at rest? Justify your answer.

