Things to know about vectors . . .

vector—a directed line segment that has an initial point and a terminal point

component form: \vec{v} or $\mathbf{v} = \langle a, b \rangle$

linear combination form: $\mathbf{v} = a\mathbf{i} + b\mathbf{j}$

magnitude = the length of a vector = $|\mathbf{v}|$ = $||\vec{v}||$ = $\sqrt{(horizontal\ component)^2 + (vertical\ component)^2}$

speed = |v(t)| = the magnitude of the velocity components

direction (a unit vector) = $\frac{velocity\ vector}{speed} = \frac{v(t)}{|v(t)|}$

note: vector/parametric free response questions are usually calculator-active

Example 1

A particle moves in the xy-plane so that its position at any time t, for $-\pi \le t \le \pi$, is given by $x(t) = \sin(3t)$ and y(t) = 2t.

- (a) Sketch the path of the particle in the xy-plane provided. Indicate the direction of motion along the path.
- (b) Find the range of x(t) and the range of y(t).
- (c) Find the smallest positive value of t for which the x-coordinate of the particle is a local maximum. What is the speed of the particle at this time?
- (d) Is the distance traveled by the particle from $t = -\pi$ to $t = \pi$ greater than 5π ? Justify your answer.

a.
$$x(-n) = 0$$
 Start

 $y(-n) = -2n$
 $x(\pi) = 0$
 $y(n) = 2\pi$
 $y(n) = 2\pi$

$$2. x(4) = \sin(3t)$$

$$x'(4) = 3\cos(3t)$$

$$3\cos(3t) = 6$$

$$cos(34) = 0$$

 $3t = cos^{-1}(0)$
 $3t = \frac{11}{2}$
 $3t = \frac{11}{2}$

2TT
$$y'(t) = 2$$

speed = $\sqrt{(3 \cos(3t))^2 + (2)^2}$
= (2) $t=\frac{\pi}{6}$

Example 2

A moving particle has position (x(t), y(t)) at time t. The position of the particle at time t = 1 is (2,6) and the velocity vector at any time t > 0 is given by $\left(1 - \frac{1}{t^2}, 2 + \frac{1}{t^2}\right)$.

- (a) Find the acceleration vector at time t=3.
- (b) Find the position of the particle at time t = 3.
- (c) For what time t > 0 does the line tangent to the path of the particle at (x(t), y(t)) have a slope of 8?
- (d) The particle approaches a line as $t \to \infty$. Find the slope of this line. Show the work that leads to your conclusion.

a)
$$a(t) = \left\langle 2t^{-3}, -2t^{-3} \right\rangle = \left\langle \frac{2}{t^3}, \frac{-2}{t^3} \right\rangle \bigg|_{t=3} = \left\langle \frac{2}{27}, \frac{-2}{27} \right\rangle$$

b)
$$S(t) = \{ \{ \{ \{ \{ \} \} \} \} \}$$

position $\{ \{ \{ \} \} \} \}$

$$1 + \frac{1}{1 + (-2)}$$
 $2 - \frac{1}{1 + (-6)}$ $c = 0$

$$S(t) = \left\langle \begin{array}{c} t + \frac{1}{4} \\ \end{array} \right\rangle 2 + \left\langle \begin{array}{c} \frac{10}{4} \\ \end{array} \right\rangle$$

$$\left\langle \begin{array}{c} \frac{10}{3} \\ \end{array} \right\rangle \frac{32}{3} \right\rangle$$

c)
$$slope = \frac{cly}{dx} = \frac{cly}{at} = \frac{2+i2}{1-i2} = 8$$

$$\frac{clx}{at} = \frac{1-i2}{1-i2}$$

$$2+i2 = 8(1-i2)$$

$$2+i4 = 8+i-8$$

$$3t^{2}+1=8t^{2}-8$$

$$9=6t^{2}$$

$$\frac{9}{6}=t^{2}$$

$$t=\sqrt{4}=\frac{3}{6}$$

d)
$$\lim_{t \to \infty} \frac{2 + \frac{1}{t^2}}{1 - \frac{1}{t^2}} = 2$$