

- a. {P3, P4, P5} weight = 8 (less than quota)
 not a winning coalition
- b. {P₁, P₂, P₃, P₄, P₅} 76332 wt=2| winning codiction

Example 9 In the voting system [14: 18, 10, 5], list all of the possible coalitions. Then determine if any voter is critical to each coalition.

coalitions lwt		
$P_1 = 18$ $P_2 = 10$	$P_{2}, P_{3} = 15$	
$P_3 = 5$	$P_{1}, P_{2}, P_{3} = 33$	
$P_1, P_2 = 28$ $P_1, P_3 = 23$ Calculating Power: Banzhaf Powe	T. 1	
Calculating Power: Banznat Power Index		

The Banzhaf power index was originally created in 1946 by Lionel Penrose, but was reintroduced by John Banzhaf in 1965. The power index is a numerical way of looking at power in a weighted voting situation. A player's power is proportional to the number of coalitions for which that player is critical. The more often a player is critical, the more power he holds.

Banzhaf power index is calculated by:

- 1) List all winning coalitions
- 2) In each coalition, identify the players who are critical
- 3) Count up how many times each player is critical
- 4) Convert these counts to fractions or decimals by dividing by the total times any player is critical

Note: The Banzhaf Power DISTRIBUTION for the weighted voting system is the % of power each player holds.

Example 10 Consider the system [16: 7, 6, 3, 3, 2]. The winning coalitions are listed below.

,	weighti	critical
$\{P_1, P_2, P_3\}$	الصا	P. P. P.
$\{P_1, P_2, P_4\}$	10	PiP2 PH
$\{P_1, P_2, P_3, P_4\}$	19	P. P.
$\{P1, P2, P3, P5\}$	18	PIP2P3
$\{P_1, P_2, P_4, P_5\}$	18	
{P1, P2, P3, P4, P5}	21	PIP2P4
\F1, F2, F3, F4, F3}	1 01	I Pi P2
	*	

Calculate the Banzhaf power index and the Banzhaf power distribution of each voter. $D = \frac{3}{2}$

The Banzhaf power index and the Banzhaf po
P. 6
$$\frac{3}{16} = \frac{3}{8}$$
 37.5%
P2: $\frac{6}{16} = \frac{3}{8}$ 37.5%
P3: $\frac{3}{16} = \frac{1}{8}$ 12.5%
P4: $\frac{3}{16} = \frac{1}{8}$ 12.5%
P5: $\frac{3}{16} = \frac{1}{8}$ 12.5%

Example 11 Consider the system [5: 3, 2, 2]. Calculate the Banzhaf power index of each vot

winning coal.	wt	critical
Pit P2	5	P. P2
$P_1 + P_3$	5	P. P.
P,+P2+P3	17	Pi
	l	1

 $\{P_2\}$ 2 $\{P_1,P_3\}$ 5 $\{P_2\}$ 1 $\{P_2,P_2\}$ \hat{U}

Helpful Hint:

If n = number of players in a weighted voting system,

Then the number of possible coalitions is: $2^{n}-1$

Calculating Power: Shapley-Shubik Power Index

The Shapley-Shubik power index was formulated by Lloyd Shapley and Martin Shubik in 1954 to measure the powers of players in a voting game. The Shapley-Shubik power index states that a player's power is proportional to the number of sequential-coalitions for which that player is pivotal. The more times a player is pivotal, the more power he holds.

Sequential coalition a group of voters in which the order of voters matters.

Factorials:

If N= the number of players, then the number of sequential coalitions is N!

 $N! = N \times (N-1) \times ... \times 3 \times 2 \times 1$

5! = 5.4.3.2.1 = 120

Banzhaf: { P₁, P₂, P₃}

These 3 players decide to vote together.

They form a coalition.

Order listed in the { } doesn't matter.

Shapley-Shubik: $\langle P_1, P_3, P_2 \rangle$

These 3 players decide to vote together. P_1 votes 1^{st} , P_3 votes 2^{nd} , P_2 votes 3^{rd} . They form a sequential coalition. Order listed in the $\langle \quad \rangle$ is important.

privatal player -- the player in a sequential coalition whose immediate sequential presence changes a losing vote to a winning one.

Example 12

Given the weighted voting system [5: 3,2,1,1], find the pivotal player for each given sequential coalition.

- 3112 a. $[P_1, P_4, P_3, P_2]$
- b. [P₃,P₁,P₂,P₄]
- c. [P₄,P₃,P₂,P₁]

Example 13

List the possible sequences for 3 players. How many are there? 3! = 3.2.1 = 6 P_1, P_2, P_3 P_2, P_1, P_3 P_3, P_1, P_2

$$P_1, P_2, P_3$$

$$P_1, P_9, P_2$$

 P_1 , P_3 , P_2 P_2 , P_3 , P_1 P_3 , P_2 , P_3 , P_2 , P_3 .

b. How many possible sequences for 4 players? for 5 players?

To find a Shapley-Shubik Power Index:

Step 1: Make a list of all sequential coalitions

Step 2: For each sequential coalition, determine the pivotal player.

Step 3: For each player, count the number of times they are pivotal and divide by the number of sequential coalitions. NOTE: Calculate the % if you are asked for the distribution.

Example 14

Consider the system [5: 3, 2, 2]. Calculate the Shapley-Shubik power index and the Shapley-Shubik power distribution of each voter.

Sequential

Coalitions: 3 Players $[P_1,\underline{P_2},P_3]$

 $[P_1,P_3,P_2]$ $[P_2, P_1, P_3]$

 $[P_2, P_3, P_1]$ $[P_3, P_1, P_2]$ $[\mathsf{P}_3,\mathsf{P}_2,\mathsf{P}_1]$

Example 15 Find the Shapley-Shubik power distribution for [6: 4, 3, 2, 1].

$$P_1: \frac{10}{24} \quad 41.6\%$$
 $P_2: \frac{6}{24} \quad 25\%$

$$[P_1, \underbrace{P_2}, P_3, P_4] \qquad [P_2, \underbrace{P_1}, P_3, P_4] \qquad [P_3, \underbrace{P_1}, P_2, P_4] \qquad [P_4, P_1, \underbrace{P_2}, P_3]$$

$$[P_1,P_2,P_4,P_3] \qquad [P_2,\underline{P_1},P_4,P_3] \qquad [P_3,\underline{P_1},P_4,P_2] \qquad [P_4,P_1,\underline{P_3},P_2]$$

$$[P_1,P_3,P_2,P_4] \qquad [P_2,P_3,\underline{P_1},P_4] \qquad [P_3,P_2,\underline{P_1},P_4] \qquad [P_4,P_2,P_1,P_3]$$

$$[P_1, P_3, P_4, P_2] \qquad [P_2, P_3, P_4, P_1] \qquad [P_3, P_2, P_4, P_1] \qquad [P_4, P_2, P_3, P_1]$$

$$[P_1,P_4,\underline{P_2},P_3] \qquad [P_2,P_4,\underline{P_1},P_3] \qquad [P_3,P_4,\underline{P_1},P_2] \qquad [P_4,P_3,\underline{P_1},P_2]$$

$$[P_1,P_4,P_3,P_2] \qquad [P_2,P_4,P_3,P_1] \qquad [P_3,P_4,P_2,P_1] \qquad [P_4,P_3,P_2,P_1]$$