Practice Volume: Cross Sections

- 1) Find the volume of the solid whose base is bounded by the graphs of y = x + 1 and $y = x^2 1$, with the indicated cross sections taken perpendicular to the *x*-axis.
 - a) Squares

$$\int_{-1}^{2} (-x^{2} + x + 2)^{2} dx$$

b) Rectangles of height 1

$$\int_{-1}^{2} \left(-x^2 + x + 2\right) dx$$

$$\frac{9}{2}$$

- 2) Find the volume of the solid whose base is bounded by the circle $x^2 + y^2 = 4$ with the indicated cross sections taken perpendicular to the x-axis.
 - a) Squares

$$\int_{-2}^{2} (16 - 4x^{2}) dx$$

$$\frac{128}{3}$$

b) Equilateral triangles

$$\int_{-2}^{2} \sqrt{3} (4 - x^{2}) dx$$

$$\frac{32\sqrt{3}}{3}$$

c) Semicircles

 $\mathbf{\Xi}$

d) Isosceles right triangles with the hypotenuse on the plane

$$\int_{-2}^{2} \frac{1}{2} \pi \left(4 - x^{2}\right) dx$$

$$\frac{16\pi}{3}$$

- $\int_{-2}^{2} (4-x^{2}) dx$ $\frac{3^{2}}{3}$
- 3) The base of a solid is bounded by $y = x^3$, y = 0 and x = 1. Find the volume of the solid for each of the following cross sections perpendicular to the y-axis.
 - a) Squares $\int_{0}^{1} (1-3\sqrt{y})^{2} dy$ $\frac{1}{10}$

b) Equilateral triangles

$$\int_{0}^{1} \frac{\sqrt{3}}{4} \left(1 - \sqrt[3]{y}\right)^{2} dy$$

$$\frac{\sqrt{3}}{40}$$

c) Semicircles

$$\int_0^1 \frac{\pi}{8} \left(1 - 3\sqrt{y}\right)^2 dy.$$

<u>Tr</u> 80