Practice 6.2 Volume: The Disk Method

1) Set up and evaluate the integral that gives the volume of the solid formed by revolving the region about the x-axis.

a)
$$y = -x + 1, x = 0, y = 0$$

$$\pi \int_0^1 \left(-x+1\right)^2 dx = \frac{\pi}{3}$$

b)
$$y = \sqrt{x}$$
, $x = 1$, $x = 4$, $y = 0$

$$\pi \int_{1}^{4} (\sqrt{x})^{2} dx = \frac{15\pi}{2}$$

2) Set up and evaluate the integral that gives the volume of the solid formed by revolving the region graphed in the first quadrant about the y-axis.

a)
$$y = x^2$$
, $y = 0$, $y = 4$, $x = 0$

b)
$$y = x^{2/3}$$
, $x = 0$, $y = 1$

$$\iint_{0}^{1} (y^{3/2})^{2} dy = \frac{\pi}{4}$$

3) Find the volume of the solid generated by revolving the region bounded by the graphs of the equations $y = \sqrt{x}$, y = 0, and x = 4 about the following lines.

a) the
$$x$$
-axis

$$\pi \int_0^4 (\sqrt{x})^2 dx = 8\pi$$

b) the line
$$x = 4$$
.

$$\pi \int_{0}^{2} (4-y^{2})^{2} dy = \frac{256\pi}{15}$$

4) Find the volume of the solid generated by revolving the region bounded by the graphs of the equations y = x y = 0, y = 4 and x = 6 about the line x = 6.

$$\pi \int_0^4 (6-y)^2 dy = \frac{208}{3} \pi$$

5) Find the volume of the solid generated by revolving the region bounded by the graphs of the equations $y = \frac{1}{\sqrt{x+1}}$, y = 0, x = 0 and x = 3 about the x-axis.

$$\pi \int_0^3 \left(\frac{1}{\sqrt{X+1}}\right)^2 dx \approx 4.355$$

6) Find the volume of the solid generated by revolving the region bounded by the graphs of the equations $y = \sin x$, y = 0, x = 0 and $x = \pi$ about the x-axis.

$$\pi \int_0^{\pi} (\sin x)^2 dx = \frac{\pi^2}{2} \approx 4.935$$