Review of Area & Volume AP Calculus AB

- 1. Find the volume of the solid formed by rotating about the x-axis the region enclosed by the graphs of $y = \sqrt{x} + 1$, the x-axis, the y-axis, and the line x = 4.
- 2. Find the volume of the solid formed by rotating the region bounded by the graph of $y = \sqrt{x} + 1$, the y-axis, and the line y = 3 about the y-axis. (calculator)
- 3. Find the area enclosed by the curve bounded by $f(x) = 5\sqrt{x}$, g(x) = 4x 6 and the y-axis.
- 4. Find the area enclosed by the curve bounded by $f(x) = \sin x$, $g(x) = \cos x$, and the y-axis over $[0, \pi/4]$.
- 5. Find the area enclosed by the curve bounded by $f(x) = \sqrt{2-x}$, $g(x) = x^3$, and the y-axis. (calculator)
- 6. Find the area enclosed by the curve bounded by $y = 3x^3$ and $x = 3y^2 5$. (calculator)
- 7. Find the volume generated when $y = 15 2x x^2$ is rotated about the x-axis on the interval [-5,3]. (calculator)
- 8. The region bounded by the graphs $y = e^x$, y = 1, and x = -1 is rotated about the x-axis. Find the volume of the resulting solid.
- 9. Find the volume generated when $f(x) = x^2 + 6$ and g(x) = 5x is enclosed by the y-axis and revolved about the x-axis. $\frac{656}{15} \pi$
- 10. Find the area between the curves $x = e^y$, $x = y^2 2$ and the lines y = -1 and y = 1.
- 11. A region is enclosed by the curves y = x and $y = x^2$.
 - a. Find the volume of the solid if it is rotated around the x-axis.
 - b. Find the volume if it is rotated about the line y = 2. Satisfies
 - c. Find the volume if it is rotated about the line x = -1. $\pi/2$
- 12. Find the volume of the solid obtained by rotating about the x-axis the region under the curve $y = \sqrt{x}$ from x = 0 to x = 1.
- 13. Find the volume of the solid obtained by rotating the region bounded by $y = x^3$, y = 8 and x = 0 about the yaxis.
- 14. Find the volume of the solid obtained by rotating the region bounded by y = 3x, y = 2x, and y = 3 about the y-axis.
- 15. Find the volume of the solid obtained by rotating the region under the graph $f(x) = 9 x^2$ from [0, 3] about the vertical axis x = -2.
- 16. Find the volume of S if the base of a solid S is the region enclosed by the graphs of $y = \sqrt{lnx}$, the line x = e, and the x-axis, and the cross sections of S perpendicular to the x-axis are squares.