1. Find a general solution for
$$\frac{dy}{dx} = 5e^{-x/2}$$
. $y = -10e^{-\frac{x}{2}} + C$

- 2. $\frac{dy}{dx} = x + 2y$. Using Euler's method, starting at (-3, 2) with step size $\Delta x = 0.5$, what is the approximate value of y(-2)?
- 3. The rate of change of N is proportional to N. When t = 0, N = 250 and when t = 1, N = 400. What is the value of N when t = 4?

4. Find an equation for y in terms of x:

5.
$$\frac{dy}{dx} = 5x^2y$$
; $y(0) = 6$ $y = 6e^{\frac{5}{3}X^3}$

6.
$$\frac{dy}{dx} = \frac{1}{y + x^2 y}$$
; $y(0) = 2$ $y = \sqrt{2 + an'(x) + 4}$

7.
$$\frac{dy}{dx} = \frac{\sin x}{\cos y}$$
; $y(0) = 3\pi/2$ $y = \arcsin\left(-\cos x\right)$

8. A colony of bacteria grows exponentially and the colony's population is 4,000 at time t=0 and 6,500 at time t=3. How big is the population at time t=10?

9. A rock is thrown upward with an initial velocity, v(t), of 18 m/s from a height, h(t), of 45 m. If the acceleration of the rock is a constant -9 m/s², find the height of the rock at time t = 4.

Review: Differential Equations

10. The rate of growth of the volume of a sphere is proportional to its volume. If the volume of the sphere is initially 36π ft³, and expands to 90π ft³ after 1 sec, find the volume of the sphere after 3 seconds.

1767.146 ft3

11. Use Euler's Method, with h=0.2, to estimate y(1) if y'=-y and y(0)=1.

0.328

12. Sketch the slope field for dy/dx = 2x

