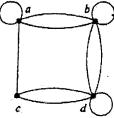
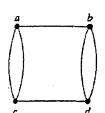

## Worksheet #2—Types of Graphs

Classify each graph as a simple graph, multigraph, pseudograph, directed graph, or directed

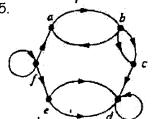

multigraph.



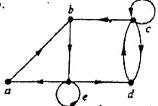




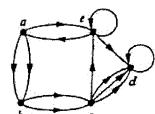

3.




pseudograph



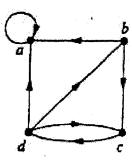

multigraph


5.



directed multigraph



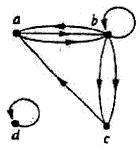

directed multigraph



directed multigraph

Complete the chart and information for each graph.

8.

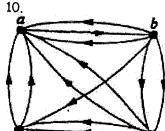



| # of vertices | = | 4 |
|---------------|---|---|
|               |   |   |

| vertex | in-degree | out-degree |
|--------|-----------|------------|
| а      | 3         | ĺ          |
| Ь      | i         | J          |
| С      | a         | ı          |
| d      | 1         | 3          |

sum of the in-degree =  $_{-7}$  sum of the out-degree =  $_{-7}$ 

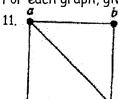
9.

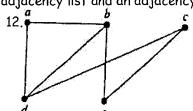


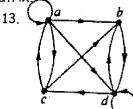

| # of edges = |  |
|--------------|--|
|--------------|--|

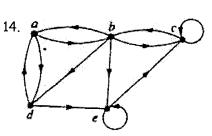
# of edges = \_\_\_\_\_\_\_

| vertex | in-degree | out-degree |
|--------|-----------|------------|
| α      | 2         | a          |
| ь      | 3         | 4          |
| с      | a         | 1          |
| d      |           |            |


sum of the in-degree = 8 sum of the out-degree = 8





|          | vertex | in-degree | out-degree    |
|----------|--------|-----------|---------------|
| * ×× * * | a      | 62        | ſ             |
|          | b      |           | 5             |
|          | С      | 2         | E             |
|          | d      | 4         | 2             |
| e e      | e      | 0         | $\frac{1}{D}$ |


sum of the in-degree = 13 sum of the out-degree = 13

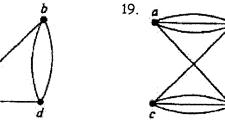
(See next page for answers / For each graph, give an adjacency list and an adjacency matrix,










Draw a directed graph with the given adjacency matrix.

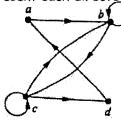

$$\begin{bmatrix}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{bmatrix}$$

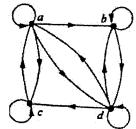
$$\begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

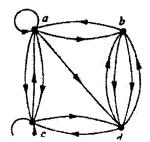
Represent each undirected graph with an adjacency matrix.






Draw an undirected graph represented by the given adjacency matrix.


$$\begin{bmatrix} 1 & 2 & 0 & 1 \\ 2 & 0 & 3 & 0 \\ 0 & 3 & 1 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$


$$\begin{bmatrix} 0 & 1 & 3 & 0 & 4 \\ 1 & 2 & 1 & 3 & 0 \\ 3 & 1 & 1 & 0 & 1 \\ 0 & 3 & 0 & 0 & 2 \\ 4 & 0 & 1 & 2 & 3 \end{bmatrix}$$

Represent each directed graph with an adjacency matrix.









Draw the directed graph represented by the given adjacency matrix.

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 0 & 0 \\ 0 & 2 & 2 \end{bmatrix}$$

| verlex adjacent to  11. a b, c, d  b c, d  c c, d  d a, b, c |                                                             |
|--------------------------------------------------------------|-------------------------------------------------------------|
| 12. a b,d b a,d,e c d,e d a,b,c e b,c                        | 0 1 0 10<br>1 0 0 11<br>0 0 0 11<br>1 1 1 0 0<br>-0 1 1 0 0 |
| 13. a a,b,cd,<br>b d<br>c a,b<br>d a,b,c                     |                                                             |
| 14 a   b,d b   a,c,d,e c   b,c d   a,e e   c,e               | 01010                                                       |
| IS.  A  B  C  I6.  A  B  C                                   | 17. PA B                                                    |

\_\_\_\_

|     |              |          |             | <b>.</b> |
|-----|--------------|----------|-------------|----------|
| 18. | 0010         | 24.      | 000         |          |
|     | 0012         |          | 0110        |          |
|     | 1101         |          | 0 1 1 1     |          |
| •   | L2210]       |          | 11000       |          |
| l a | <u> </u>     |          |             | <u> </u> |
| 19. | 0 3 0 1      | 25,      |             |          |
|     | 3 0 1 0      |          | 0101        |          |
|     | 0 1 0 3      |          | 1010        |          |
|     |              |          | 1 1 1 1 1   |          |
| 20. | [1021]       | alo.     | - 1 - 1 - 7 |          |
| 201 | 0112         | αψ,      | 1 1 2 1     |          |
|     | 12110        |          | 1011        |          |
|     | 1201         |          | 0210        |          |
|     |              |          |             |          |
| al. | $\bigcirc A$ | 27.      | B           |          |
|     | B            | <u> </u> | A B         |          |
|     |              |          |             |          |
|     | C            |          | - Ac        |          |
| 0.5 |              |          |             |          |
| 22. | A B          |          |             |          |
|     |              | 28. 1    | B           |          |
|     |              | G        |             |          |
|     | & &c         |          |             |          |
|     |              |          |             |          |
| 23. | A OB         |          |             |          |
|     |              |          |             |          |
|     |              |          |             |          |
|     |              | C        |             |          |
| d   |              |          |             |          |
| ))) | D            |          |             |          |
| ·   |              |          |             |          |