Unit #3 Practice - AP Multiple-Choice ## Part 1: Review of Limits & Continuity (non-calculator) 1. $$\lim_{x\to 2} \frac{x^2-4}{x^2+4}$$ is (A) 1 (C) -1/2 (D) -1 (E) ∞ 2. $$\lim_{x\to\infty} \frac{2^{-x}}{2^x}$$ is (A) -1 (B) 1 (D) ∞ (E) none of these 3. The graph of $$y = \frac{x^2 - 9}{3x - 9}$$ has (A) a vertical asymptote at x = 3(C) a removable discontinuity at x = 3(E) none of these (B) a horizontal asymptote at y = 1/3 (D) an infinite discontinuity at x = 3 4. $$\lim_{x\to 0} sin\left(\frac{1}{x}\right)$$ is (B) 1 (D) -1 (E) none of these ## Part 2a: Differentiation Rules (non-calculator) Find the derivative of each function below: $$5. \ y = \frac{2}{(5x+1)^2}$$ (A) $$-\frac{30}{(5x+1)^2}$$ (D) $$-\frac{10}{3(5x+1)^{-4/3}}$$ (B) $$-\frac{30}{(5x+1)^4}$$ (E) $$\frac{30}{(5x+1)^{\frac{1}{2}}}$$ (C) $$-\frac{6}{(5x+1)^4}$$ $$6. y = \frac{x^2}{\cos(x)}$$ $$(A) \quad \frac{2x}{\sin(x)}$$ (A) $$\frac{2x}{\sin(x)}$$ (D) $$\frac{2x\cos(x) + x^2\sin(x)}{\cos^2(x)}$$ (B) $$-\frac{2x}{\sin(x)}$$ (E) $$\frac{2x\cos(x)-x^2\sin(x)}{\sin^2(x)}$$ (C) $$\frac{2x\cos(x) - x^2\sin(x)}{\cos^2(x)}$$ 7. $$y = ln\left(\frac{e^x}{e^x - 1}\right)$$ (A) $$x - \frac{e^x}{e^x - 1}$$ (B) $$\frac{1}{e^x}$$ (B) $$\frac{1}{e^{x}-1}$$ (E) $$\frac{e^{x}-2}{e^{x}-1}$$ $$(C) - \frac{1}{e^{x} - 1}$$ $$8. y = tan^{-1} \left(\frac{x}{2}\right)$$ (A) $$\frac{4}{x^2+4}$$ (D) $\frac{1}{2+x^2}$ $$(E) \frac{2\sqrt{4-3}}{2\sqrt{4-3}}$$ $$(C)\,\frac{1}{\sqrt{4-x^2}}$$ | 9. 11 | he equation (
(A) y = x – π | | line to th
/= π/2 | | = xsin(x) ε
() y = π – x | at the po | int $(\pi/2, \pi/2)$ is
(D) $y = x + \pi/2$ | (E)y = > | |---|---|---|---------------------------|----------------------|------------------------------------|----------------|--|---------------| | 10. / | | | | [-5, 5] is a | tangent lir | ne to y = | x + cos(x) paral | lel to | | Cr. | (A) none | (B) | 1 | (C) 2 | (D) 3 | | (E) more than 3 | | | | 11. Let $f(x) = 3^x - x^3$. The (3, 0) for $x =$ | | ent to the | curve is | parallel to | the seca | ant through (0, 1) | and | | | (A) 0.984
(D) 0.984 | only
and 2.804 on | ly | (B) 1.24
(E) 1.24 | 4 only
4 and 2.72 | ?7 only | (C) 2.727 only | | | Part 3: Cui | rve Skecthir | ıg (non-calcı | ılator) | | | | | | | | | value of the
(B) 2 | | Λ | $y = x^5 + x^3$ | | ne of these | | | 13. ⁻ | The number (A) 0 | of inflection po
(B)1 | oints of th
(C) 2 | | n Question
D) 3 | 12 is
(E) 4 | | | | 14. The function f(x) = x⁴ - 4x² has (A) one relative minimum and two relative maxima (B) one relative minimum and one relative maximum (C) two relative minima and no relative minimum (D) two relative minima and no relative maximum (E) two relative minima and one relative maximum | | | | | | | | | | 15. ⁻ | The maximur
(A)0 | n value of the
(B) -4 | function
(C) 2 | | | (E) no | ne of these | | | | | | | | points of th | ne functi | on whose deriva | tive, for | | • | (A) 0 | by $f'(x) = x(x)$ | $-3)^{2}(x + (C) 2$ | • | O) 3 | (E) no | ne of these | | | 17. l | If $f(x) = xe^{-x}$, 1
(A) f is incr
(D) f has a | | um | The second second | ecreasing
es not exits | | (C) f has a relativ | e maximum | | 18. A function f has a derivative for each x such that $ x < 2$ and has a local minimum at (2, -5). Which statement below must be true? | | | | | | | | | | | (A) $f'(2) = 0$
(D) $f'(x) < 0$ | if $x < 2$, $f'(x) > 0$ | if x > 2 | | B) f' exist at x
E) none of the | | (C) concavecessarily true | e up at x = 2 | | 19. | (A) the cu
(B) the cu | bx ² and ab >
rve has no ho
rve is concave
rve is concave | rizontal ta
e up for a | ll x | | | | | | | | rve has no inf
of the precedin | | | ue | | | |