Unit #3 Practice - AP Multiple-Choice

Part 1: Review of Limits & Continuity (non-calculator)

1.
$$\lim_{x\to 2} \frac{x^2-4}{x^2+4}$$
 is

(A) 1

(C) -1/2

(D) -1

(E) ∞

2.
$$\lim_{x\to\infty} \frac{2^{-x}}{2^x}$$
 is

(A) -1

(B) 1

(D) ∞

(E) none of these

3. The graph of
$$y = \frac{x^2 - 9}{3x - 9}$$
 has

(A) a vertical asymptote at x = 3(C) a removable discontinuity at x = 3(E) none of these

(B) a horizontal asymptote at y = 1/3

(D) an infinite discontinuity at x = 3

4.
$$\lim_{x\to 0} sin\left(\frac{1}{x}\right)$$
 is

(B) 1

(D) -1

(E) none of these

Part 2a: Differentiation Rules (non-calculator)

Find the derivative of each function below:

$$5. \ y = \frac{2}{(5x+1)^2}$$

(A)
$$-\frac{30}{(5x+1)^2}$$

(D)
$$-\frac{10}{3(5x+1)^{-4/3}}$$

(B)
$$-\frac{30}{(5x+1)^4}$$

(E)
$$\frac{30}{(5x+1)^{\frac{1}{2}}}$$

(C)
$$-\frac{6}{(5x+1)^4}$$

$$6. y = \frac{x^2}{\cos(x)}$$

$$(A) \quad \frac{2x}{\sin(x)}$$

(A)
$$\frac{2x}{\sin(x)}$$
(D)
$$\frac{2x\cos(x) + x^2\sin(x)}{\cos^2(x)}$$

(B)
$$-\frac{2x}{\sin(x)}$$

(E)
$$\frac{2x\cos(x)-x^2\sin(x)}{\sin^2(x)}$$

(C)
$$\frac{2x\cos(x) - x^2\sin(x)}{\cos^2(x)}$$

7.
$$y = ln\left(\frac{e^x}{e^x - 1}\right)$$

(A)
$$x - \frac{e^x}{e^x - 1}$$

(B)
$$\frac{1}{e^x}$$

(B)
$$\frac{1}{e^{x}-1}$$
(E)
$$\frac{e^{x}-2}{e^{x}-1}$$

$$(C) - \frac{1}{e^{x} - 1}$$

$$8. y = tan^{-1} \left(\frac{x}{2}\right)$$

(A)
$$\frac{4}{x^2+4}$$
 (D) $\frac{1}{2+x^2}$

$$(E) \frac{2\sqrt{4-3}}{2\sqrt{4-3}}$$

$$(C)\,\frac{1}{\sqrt{4-x^2}}$$

9. 11	he equation ((A) y = x – π		line to th /= π/2		= xsin(x) ε () y = π – x	at the po	int $(\pi/2, \pi/2)$ is (D) $y = x + \pi/2$	(E)y = >
10. /				[-5, 5] is a	tangent lir	ne to y =	x + cos(x) paral	lel to
Cr.	(A) none	(B)	1	(C) 2	(D) 3		(E) more than 3	
	11. Let $f(x) = 3^x - x^3$. The (3, 0) for $x =$		ent to the	curve is	parallel to	the seca	ant through (0, 1)	and
	(A) 0.984 (D) 0.984	only and 2.804 on	ly	(B) 1.24 (E) 1.24	4 only 4 and 2.72	?7 only	(C) 2.727 only	
Part 3: Cui	rve Skecthir	ıg (non-calcı	ılator)					
		value of the (B) 2		Λ	$y = x^5 + x^3$		ne of these	
13. ⁻	The number (A) 0	of inflection po (B)1	oints of th (C) 2		n Question D) 3	12 is (E) 4		
 14. The function f(x) = x⁴ - 4x² has (A) one relative minimum and two relative maxima (B) one relative minimum and one relative maximum (C) two relative minima and no relative minimum (D) two relative minima and no relative maximum (E) two relative minima and one relative maximum 								
15. ⁻	The maximur (A)0	n value of the (B) -4	function (C) 2			(E) no	ne of these	
					points of th	ne functi	on whose deriva	tive, for
•	(A) 0	by $f'(x) = x(x)$	$-3)^{2}(x + (C) 2$	•	O) 3	(E) no	ne of these	
17. l	If $f(x) = xe^{-x}$, 1 (A) f is incr (D) f has a		um	The second second	ecreasing es not exits		(C) f has a relativ	e maximum
18. A function f has a derivative for each x such that $ x < 2$ and has a local minimum at (2, -5). Which statement below must be true?								
	(A) $f'(2) = 0$ (D) $f'(x) < 0$	if $x < 2$, $f'(x) > 0$	if x > 2		B) f' exist at x E) none of the		(C) concavecessarily true	e up at x = 2
19.	(A) the cu (B) the cu	bx ² and ab > rve has no ho rve is concave rve is concave	rizontal ta e up for a	ll x				
		rve has no inf of the precedin			ue			