Multiple-Choice:

1. The table shows the speed of an object, in feet per second, during a 3-second period. Estimate the distance the object travels, using the trapezoid method.

-	Time	0	1	2	3
	(sec)				
		30	22	12	0
	Speed (ft/sec)				

- a. 34 ft
- b. 45 ft

- e. 64 ft
- 2. Estimate $\int \sqrt{25-x^2} dx$ using the Left-Rectangular Rule and two subintervals.
 - a. $3+\sqrt{21}$ b. $5+\sqrt{21}$

- c. $6+2\sqrt{21}$ d. $8+2\sqrt{21}$

- e. $10 + 2\sqrt{21}$
- 3. For the function whose values are given in the table below, $\int f(x)dx$ is approximated by a

Riemann Sum using the value at the midpoint of each three intervals of width 2.

х	0	1	2	3	4	5	6
f(x)	0	0.25	0.48	0.68	0.84	0.95	1

The approximation is

- a. 2.64
- b. 3.64

- e. 4.64
- 4. Let f be differentiable for all real numbers. Which of the following must be true for any real numbers a and b?

1.
$$\int_{2}^{a} f(x)dx = \int_{2}^{b} f(x)dx + \int_{b}^{a} f(x)dx$$

II.
$$\int_{a}^{b} ([f(x)]^{2} + f'(x))dx = [f(b)]^{2} - [f(a)]^{2}$$
III.
$$\int_{a}^{b} 3f(x)dx = 3\int_{a}^{b} f(x)dx$$

III.
$$\int_a^b 3f(x)dx = 3\int_a^b f(x)dx$$

- a. I only
- b. II only

c. I and II d. I and III e. I, II, and III

- 5. The velocity of a particle moving along a straight line is given by $v(t) = 3x^2 4x$. Find an expression for the acceleration of the particle.
 - a. $x^3 4$

c. $3x^2 - 4$

b. $x^3 - 2x^2$

d. 3x - 4

- 6. Suppose f and g are even functions that are continuous for all x and let a be a real number. Which of the following expressions must have the same value?

 - 1. $\int_{-a}^{a} [f(x) + g(x)]dx$ 11. $2\int_{0}^{a} [f(x) + g(x)]dx$

 $III. \int_{-a}^{a} f(x)dx + \int_{-a}^{a} g(x)dx$

- a. I and II only
- b. I and III only
- c. II and III only d. I, II, and III

- e. None
- 7. A particle moves along a line with acceleration 2 + 6t at time t. When t = 0, its velocity, v, equals 3 and its position, s, is 2. When t = 1, it is at position s = 1
 - a. 2

b. 5

- e. 8

- 8. The average value of cos x over the interval $\frac{\pi}{3} \le x \le \frac{\pi}{2}$ is

- 9. A bicyclist rides along a straight road starting from home at t = 0. The graph below shows the bicyclist's velocity as a function of t. How far from home is the bicyclist after 2 hours?
 - a. 13 miles b. 16.5 miles c. 17.5 miles d. 18 miles
 - e. 20 miles
- V(mph)12 -t (hours) -6
- 10. Let $A = \int (\cos x) dx$. We estimate A using the L, R, and T approximations with n = 100
 - subintervals. Which is true?
 - a. L < A < T < R
 - b. L < T < A < R
 - c. R < A < T < L

- d. R < T < A < 1
- The order cannot be determined

11. If f(x) is continuous on the interval $a \le x \le b$ and a < c < b, then $\int_{-\infty}^{\infty} f(x) dx$ is equal to

a.
$$\int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

b.
$$\int_{c}^{c} f(x)dx - \int_{c}^{b} f(x)dx$$

c.
$$\int_{c}^{a} f(x)dx + \int_{b}^{a} f(x)dx$$

12. If f(x) is continuous on $a \le x \le b$, then

a.
$$\int_{a}^{b} f(x)dx = f(b) - f(a)$$

$$c. \int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$$

$$c. \int_{b}^{b} f(x)dx \ge 0$$

d.
$$\frac{d}{dx} \int_{a}^{x} f(t)dt = f'(x)$$

e.
$$\frac{d}{dx} \int_{a}^{x} f(t)dt = f(x) - f(a)$$

13. If F'(x) = G'(x) for all x, then

a.
$$\int_{a}^{b} F'(x)dx = \int_{a}^{b} G'(x)dx$$

b.
$$\int F(x)dx = \int G(x)dx$$

b.
$$\int F(x)dx = \int G(x)dx$$

c. $\int_{a}^{b} F(x)dx = \int_{a}^{b} G(x)dx$
d. $\int F(x)dx = \int G(x)dx + C$

d.
$$\int F(x)dx = \int G(x)dx + C$$

e.
$$F(x) = G(x)$$
 for all x

14. Using M(3), we find the approximate area of the shaded region below is

- b. 19

c. 36 d. 38

15. Using T(6), we find the approximate area of the above shaded region is

- a. 17.5
- b. 30

e. 60

e. 54

$$16. \int_{0}^{8} x^{2/3} dx$$

c. 4/3 d. -1/3 e. -96/5

- 17. $\int 2\cos t dt =$
 - a. 2cosx
 - b. -2cosx

- c. 2sinx
- d. -2sinx + 2

- e. 2sinx 2
- 18. If f(x) is an anti-derivative of $x^2 \sqrt{x^3 1}$ and f(2) = 0, then f(0) =

 - b. 6

- c. 2/9
- d. -52/9

e. DNE

- 19. $g(x) = \int_{1}^{x} \frac{3t}{t^3 + 1} dt$, then g'(2) is

 - b. -2/3

- e. 5/6
- 20. The temperature of a cup of coffee is dropping at a rate of $f(t) = 4\sin\frac{t}{4}$ degrees for

0≤t≤5, where f is measured in Fahrenheit and t in minutes. If initially, the coffee is 95°F, find its temperature to the nearest degree Fahrenheit 5 minutes later. e. 94

- c. 91
 - d. 92