AP Calculus Unit 5 Review (Cumulative)

$$\int_0^1 e^{-4x} \, dx$$

(A)
$$\frac{-e^{-4}}{4}$$

(B)
$$-4e^{-4}$$

(C)
$$e^{-4} - 1$$

(D)
$$\frac{1}{4} - \frac{e^{-4}}{4}$$

(E)
$$4 - 4e^{-4}$$

Which of the following could be a solution of the differential equation with the given slope field?

(A)
$$y = x + 1$$

(D) $y = \ln(x + 1)$

(B)
$$y = x^2 + 2$$

(E) $y = 2e^x$

(C)
$$y = x^3 -$$

3)

the positive y-axis, the slope field for the differential equation $\frac{dy}{dt} = \frac{t^2}{y}$ (A) Horizontal (B) Vertical (C) Segments with segments

(D) Segments with negative slope (E) Segments with slope equal to 1

Which of the following differential equations has $x^2 - 4y^2 = 4$ as a solution? 4)

$$\frac{dy}{dx} = 4xy$$

$$(B)^y$$

$$y\frac{dy}{dx} = \frac{x}{4}$$

$$\frac{dy}{dx} = \frac{4y}{x}$$

$$\frac{dy}{dx} = -\frac{x}{4y}$$

$$\frac{dy}{dx} = \frac{4x}{y}$$

(B)
$$\frac{5}{2x}\ln(1+x^2)+C$$
 (C) $5x-\frac{5}{x}+C$

(E)
$$5\ln(1+x^2) + C$$

6)
$$\int_{1}^{2} \frac{x-4}{x^{2}} dx =$$

$$\int_{1}^{2} \frac{x-4}{x^{2}} dx =$$
(A) - ½ (B) ln2 - 2

(E)
$$ln2 + 2$$

The average value of the function $f(x) = e^{-x} \sin(x)$ on the closed interval $[1, \pi]$ is

- (B) 0.145
- (C) 0.155
- (D) 0.276
- (E) 0.310

- The slope of the line tangent to the curve $y^2 + (xy + 1)^3 = 0$ at (2, -1) is (A) -3/2 (B) -3/4 (C) 08)

(E) 3/2

If $y = \arctan(e^{2x})$, then $\frac{dy}{dx} = \frac{2e^{2x}}{\sqrt{1 - e^{4x}}}$ 9)

(A)
$$\frac{2e^{2x}}{\sqrt{1-e^{4x}}}$$

$$(B) 1 + e^{4x}$$

(C)
$$\frac{e^{2x}}{1+e^{4x}}$$

(D)
$$\sqrt{1-e^{4x}}$$

- $\frac{dy}{dx} = (1 + \ln x)y$ and if y = 1 when x = 1, then y =
- (B) $1 + \ln x$
- (C) ln *x*

and y = 1 when x = 1, use Euler's method with $\Delta x = 0.1$ to approximate the value of y

- (B) 1.353
- (C) 1.483
- (D) 2.183
- (E) 1.766
- The half-life of Radium-226 is 1620 years. If 100 grams were present in a sample in the year 1000, how many grams would remain 1000 years later?
 - (a) 55.4
- (b) 60.3
- (d) 70.1
- (e) 72.3
- Newton's Law of Cooling states that the rate of change in the temperature y of an object is proportional to the difference between the object's temperature and the temperature y_0 of the surrounding medium. Write the differential equation that models Newton's Law of Cooling.
 - (a) $\frac{dy}{dt} = -ky$

(b) $\frac{dy}{dt} = ky$

(c) $\frac{dy}{dt} = y - y_0$

 $\frac{dy}{dt} = k(y - y_0)$

(e) $\frac{dy}{dt} = ky_0 y$