Extra Practice—Derivative Rules for Natural Logs and Exponentials

Differentiate the following functions.

a.
$$f(x) = \ln(2x^3)$$

b.
$$f(x) = e^{x^7}$$

a.
$$f(x) = \ln(2x^3)$$
 b. $f(x) = e^{x^7}$ **c.** $f(x) = \ln(11x^7)$

d.
$$f(x) = e^{x^2 + x^3}$$

d.
$$f(x) = e^{x^2 + x^3}$$
 e. $f(x) = \log_e(7x^{-2})$ **f.** $f(x) = e^{-x}$

f.
$$f(x) = e^{-x}$$

$$g. \quad f(x) = \ln(e^x + x^3)$$

$$\mathbf{h.} \quad f(x) = \ln(e^x x^3)$$

g.
$$f(x) = \ln(e^x + x^3)$$
 h. $f(x) = \ln(e^x x^3)$ **i.** $f(x) = \ln\left(\frac{x^2 + 1}{x^3 - x}\right)$

ANSWERS:

a.
$$f'(x) = \frac{6x^2}{2x^3} = \frac{3}{x}$$

Alternatively write $f(x) = \ln 2 + 3 \ln x$ so that $f'(x) = 3\frac{1}{x}$.

b.
$$f'(x) = 7x^6e^{x^7}$$

c.
$$f'(x) = \frac{7}{x}$$

d.
$$f'(x) = (2x + 3x^2)e^{x^2 + x^3}$$

e. Write
$$f(x) = \log_e 7 - 2\log_e x$$
 so that $f'(x) = -\frac{2}{x}$.

f.
$$f'(x) = -e^{-x}$$

g.
$$f'(x) = \frac{e^x + 3x^2}{e^x + x^3}$$

h. Write
$$f(x) = \ln e^x + \frac{3}{\ln x}$$
 so that $f'(x) = 1 + \frac{3}{x}$.

i. Write
$$f(x) = \ln(x^2 + 1) - \ln(x^3 - x)$$
 so that $f'(x) = \frac{2x}{x^2 + 1} - \frac{3x^2 - 1}{x^3 - x}$.