1992 BC4

Solution

(a) For continuity at x = 1,

$$\lim_{x \to 1^{-}} (2x - x^{2}) = f(1) = \lim_{x \to 1^{+}} (x^{2} + kx + p)$$

Therefore 1 = 1 + k + p

Since f is continuous at x = 1 and is piecewise polynomial, left and right derivatives exist.

$$f'_{-}(1) = 0$$
 and $f'_{+}(1) = 2 + k$

For differentiability at x = 1, 0 = 2 + k.

Therefore k = -2, p = 2

(b)
$$f'(x) = 2 - 2x$$
, $x \le 1$

$$2 - 2x > 0$$

$$f'(x) = 2x - 2, x > 1$$

$$2x - 2 > 0$$

Since f increases on each of $(-\infty,1)$ and $(1,\infty)$ and is continuous at x=1, f is increasing on $(-\infty,\infty)$.

(c)
$$f''(x) = -2$$
, $x < 1$

$$f''(x) = 2, x > 1$$

Since f''(x) < 0 on $(-\infty, 1)$ and

$$f''(x) > 0$$
 on $(1, \infty)$ and

f(1) is defined,

(1, f(1)) = (1,1) is a point of inflection.