

When dealing with a **RELATION** that is <u>not a function</u>, it is often possible to solve for y. Then you can identify the functions which are **IMPLICITLY** defined by the original relation.

\*\*\*HINT: SOLVE FOR Y. If the equation starts with  $y^2$  when solving you will always end with  $\pm$  some expression. The positive (+) is one equation, and the negative (-) is the other. These two different equations are the two implicitly defined equations for the given relation.

Example 1 Find two functions defined implicitly by each given relation.

a) 
$$x = y^{2}$$
 $y = \pm \sqrt{x}$ 

( $x + y$ )( $x + y$ ) = 1

 $(x + y)^{2} = 1$ 
 $(x + y)^{2} =$ 

- ightharpoonup The most important thing to remember about INVERSES is that x & y switch.
- The inverse of f(x) is denoted  $f^{-1}(x)$
- If f(x) & g(x) are inverses of one another then the domain of one is the range of the other & vice-
- ❖ A relation is a function if it passes the Vertical Line Test (VLT)
- ❖ A relation has an inverse that is a function if it passes the Horizontal Line Test (HLT)
- ❖ A function has an inverse function if it is a one-to-one function (meaning it passes both the HLT & VLT)
- The graphical relationship between inverses is that they are reflections of one another over the line y = x





### Using the Vertical & Horizontal Line Tests

### Example 2

(a) Which of the relations to the right are functions? pass VLT A, B, C, E







(b) Which of the relations to the right have an inverse function? DUSS B,D,E,F







(c) Which of the relations are one-to-one functions?

## Calculating Inverses Algebraically

Example 3 Given the function f(x) calculate  $f^{-1}(x)$  and identify the domain and range of each: (a)  $f(x) = 3\sqrt{x} - 5$   $f^{-1}(x) = \frac{(x+5)^2}{4}$ 

(a) 
$$f(x) = 3\sqrt{x} - 5$$

$$f^{-1}(x) = \frac{(\chi + 5)^2}{G}$$

Domain of f(x):  $[Lv, \infty)$  Domain of  $f^{-1}(x)$ :  $[L-5, \infty)$ 

Range of f(x):  $[-5,\infty)$  Range of  $f^{-1}(x)$ :  $[0,\infty)$ 

$$X = 3\sqrt{y} - 5$$

$$X + 5 = 3\sqrt{y}$$

$$(\frac{x+5}{3})^{2} = \sqrt{(x+5)^{2}}$$

$$(\frac{x+5}{3})^{2} = \sqrt{y}$$

$$(b) f(x) = \frac{x-4}{x+3}$$

$$f^{-1}(x) = \frac{3x+4}{1-x}$$

$$y = \left(\frac{x+5}{3}\right)^2 = \left(\frac{x+5}{9}\right)^2$$

$$f^{-1}(x) = \frac{3 \times +4}{1 - \times}$$

Domain of f(x):  $(-\infty, -3) U(-3, \infty)$  Domain of  $f^{-1}(x)$ :  $(-\infty, 1) U(1, \infty)$ 

Range of f(x):  $(-\infty, 1) \cup (1, \infty)$  Range of  $f^{-1}(x)$ :  $(-\infty, -3) \cup (-3, \infty)$ 

$$x = \frac{y-4}{y+3}$$

$$3x+4 = y - xy$$
  
 $3x+4 = y(1-x)$ 

$$x(y+3) = 1(y-4)$$

$$x = \frac{y-4}{y+3}$$
  $3x+4 = y-xy$   
 $3x+4 = y-xy$   
 $3x+4 = y(1-x)$   
 $3x+4 = y(1-x)$   
 $3x+4 = y$   
 $3x+4 = y$ 

(c) 
$$f(x) = -(x+1)^3 - 5$$
  $f^{-1}(x) = - 1 + 3 - x - 5$ 

Domain of 
$$f(x)$$
:  $(-CC, CC)$  Domain of  $f^{-1}(x)$ :  $(-CC, CC)$ 

Range of 
$$f(x)$$
:  $(-cc, cc)$  Range of  $f^{-1}(x)$ :  $(-cc, cc)$ 

$$X = -(y+1)^3 - 5 - x - 5 = (y+1)^3 - 1 + 3 - x - 5 = y + 1$$

$$(d) f(x) = \frac{3}{x-5} \qquad f^{-1}(x) = \frac{5+\frac{3}{x}}{x}$$

Domain of 
$$f(x)$$
:  $\left(-\frac{\pi}{2}, \frac{5}{2}\right) \left(\frac{5}{2}, \frac{\pi}{2}\right)$  Domain of  $f^{-1}(x)$ :  $\left(-\frac{\pi}{2}, \frac{5}{2}\right) \left(\frac{5}{2}, \frac{\pi}{2}\right)$ 

Range of 
$$f(x)$$
:  $(-0,0) U(0,0)$  Range of  $f^{-1}(x)$ :  $(-0,5) U(5,0)$   
 $x = \frac{3}{y-5}$   $xy - 5x = 3$   
 $x(y-5) = 3$   $xy = 5x+3$   
 $y = \frac{5x+3}{x} = 5+\frac{3}{x}$ 

# Sketching an Inverse Relation From a Graph

Given the function f(x) below, sketch  $f^{-1}(x)$  and identify the domain and range of both. Example 4



$$\mathbf{D} \text{ of } f(x) \colon \underbrace{\left( - \mathcal{C} \mathcal{C} \right) \mathcal{C} \mathcal{C}}$$

$$\mathbf{D} \circ f f(x)$$
:  $\left( - \mathcal{C} \mathcal{C} , \mathcal{C} \right)$   $\mathbf{R} \circ f f(x)$ :  $\left( - \mathcal{C} \mathcal{C} , \mathcal{C} \right)$ 

$$\mathbf{D} \text{ of } f^{-1}(x) \colon \underbrace{\left(-CC, CC\right)}_{} \mathbf{R} \text{ of } f^{-1}(x) \colon \underbrace{\left(-CC, CC\right)}_{} \mathbf{CC}$$

R of 
$$f^{-1}(x)$$
:  $(-CC, CC)$ 

# The Inverse Composition Rule



A function f is one-to-one with inverse function g if and only if f(g(x)) = x for every x in the domain of g, and g(f(x)) = x for every x in the domain of f.

#### **Verifying Inverses**

Example 5 Given the two functions below, verify that they are inverses of one another.

(a) 
$$f(x) = -\frac{1}{2}(x+3)^2 - 4$$
 &  $g(x) = \sqrt{-2x-8} - 3$   

$$f(g(x)) = -\frac{1}{2}\left(\sqrt{-2x-8} - 3 + 3\right)^2 - 4 = -\frac{1}{2}\left(\sqrt{-2x-8}\right)^2 - 4$$

$$= -\frac{1}{2}\left(-2x-8\right) - 4 = x+4-4 = x$$

$$g(f(x)) = \sqrt{-\frac{1}{2}(x+3)^2 - 4} - 8 - 3 = \sqrt{(x+3)^2 + 8 - 8} - 3$$

$$= \sqrt{(x+3)^2 - 3} = x+3-3 = x$$
(b)  $f(x) = \frac{x-11}{3}$  &  $g(x) = 3x+11$ 

$$f(g(x)) = \frac{3x+11-11}{3} = \frac{3x}{3} = x$$

$$q(f(x)) = 3(\frac{x-11}{3}) + 11 = x - 11 + 11 = x$$

(c) 
$$f(x) = 5\sqrt[3]{x} - 7 \& g(x) = \frac{(x+7)^3}{125}$$
  

$$f(g(x)) = 5\sqrt[3]{\frac{(x+7)^3}{125}} - 7 = 5 \cdot \frac{x+7}{5} - 7 = x+7-7 = x$$

$$g(f(x)) = \frac{(5\sqrt[3]{x} - 7)^3}{125} = \frac{(5\sqrt[3]{x})^3}{125} = \frac{125 \times 125}{125} = x$$