Precalonlusy  Unit 1 Notes—Implicit Functionsy and Inwverses

; When dealing with a RELATION that is not a function, it is often possible to solve for y. Then
' 7 you can identify the functions which are IMPLICITLY defined by the original relation.
**¥*HINT: SOLVE FOR Y. If the equation starts with y* when solving you will always end with = some
expression. The positive (1) is one equation, and the negative (-) is the other. These two different
equations are the two implicitly defined equations for the given relation.
Example 1 Find two functions defined implicitly by each given relation.
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»  The most important thing to remember about INVERSES is that x & y switch.

The inverse of f(x) is denoted f ~'(x)

If f(x) & g (x) are inverses of one another then the domain of one is the range of the other & vice-
versa.

A relation is a function if it passes the Vertical Line Test (VLT)

A relation has an inverse that is a function if it passes the Horizontal Line Test (HLT)

A function has an inverse function if it is a one-to-one function (meaning it passes both the HLT
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% The graphical relationship between inverses is that they are reflections of one another over the
line y=x
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Using the Vertical & Horizontal Line Tests

Example 2 A B c
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Calculating Inverses Algebraically

Example 3 Given the function f(x) calculate f ~!(x) and identify the domain and range of each:
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(d) f(X)=x_5
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Sketching an Inverse Relation From a Graph

Example 4 Given the function f(x) below, sketch f~!(x) and identify the domain and range of both.
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The Inverse Composition Rule

" A function fis one-to-one with inverse function g if and only if (g(x)) x for every x in the
€7 domain of g, and g(f(x)) = x for every x in the domain of f
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Verifying Inverses

Example 5 Given the two functions below, verify that they are inverses of one another.

(a) f(X)=—-%(X+3)2—4 & g(x) =~+/-2x-8-3
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(b) f(X):x—B— & g(x)=3x+11
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