Notes -- Intro to Probability & The Counting Principle

Tossing a 2-sided Coin

If you have multiple tosses, a tree diagram may help ...

Selecting a Card from a Standard Deck

Standard Deck of 52 Playing Cards:

Diamonds (Red): 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + J + Q + K + A + Hearts (Red): 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + J + Q + K + A + Spades (Black): 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + J + Q + K + A + Spades (Black): 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + J + Q + K + A +

There are
52 cards in a standard deck
with jokers removed.

There are 4 suits: Spades, Clubs, Hearts, Diamonds

There are 26 black cards, and 26 red cards.

Each suit has 13 cards, each of a different rank.

Face cards are Jacks, Queens, and Kings There are 12 face cards in a deck

1

Rolling a Standard Die

6

	1	2	3	4	5	6
1	1,1,	1,2,	1,3,	1,4,	1,5	1,6,
2	2,1,	2,2	2,3	2,4 ε	2,5,	2,6
3	3,1	3,2	3,3	3,4	3,5	3,6
4	4,1	4,2	4,3,	4,4	4,5	4,6
5		1	5,3	2	1	<u> </u>
6	6,1,	6,2	6,3	6,4	6,5	6,6

Basic Probability

probability of an event =

the # of outcomes which make up the event the total # of outcomes

Example 1 Roll a die. Find:

A. p(even #)
$$\frac{3}{6} = \frac{1}{2}$$

B.
$$p(5)$$
 $\frac{1}{6}$

B. p(5)
$$\frac{1}{6}$$

C. p(zero) $\frac{0}{6} = 0$

D.
$$p(not 3) = \frac{5}{6}$$

$$|-p(3)| = |-\frac{1}{6}| = \frac{5}{6}$$

Example 2 Toss a coin. Find:

A. p(head)
$$\frac{1}{2}$$

B. p(tails)
$$\frac{1}{2}$$

Draw a card. Find: Example 3

A. p(heart)
$$\frac{13}{52} = \frac{1}{4}$$

B. p(black)
$$\frac{36}{52} = \frac{1}{2}$$

C. p(not diamond)
$$\frac{39}{52} = \frac{3}{4}$$

D. p(red queen)
$$\frac{2}{52} = \frac{1}{26}$$

E. p(face card)
$$\frac{13}{52} = \frac{3}{13}$$

B. p(black)
$$\frac{39}{52} = \frac{3}{4}$$

C. p(not diamond) $\frac{39}{52} = \frac{3}{4}$ $\left| -p(diamond) \right| = \left| -\frac{13}{52} = \frac{3}{4} \right|$

The Fundamental Counting Principle

If task A can be completed in "a" ways, and task B can be completed in "b" ways, then task A followed by task B can be completed in a \cdot b ways.

outcome _--the result of a single trial

Sample Space -- the set of all possible outcomes

Example 4 How many ways can a president and a secretary be chosen for a 4-member club? Assume the same person can't be both. Suppose the club members are Andy, Bill, Cathy, and Dawn.

P	5	PI	<u>S</u>
AA	B	C	A 12 outcomes
A		c	D
B	A	D	A 4.3 = 12
BBB	16	D	C
_ P	سلا	11	الأمالية فيما مناها المالية المالية المالية المالية

Example 5 How many outcomes are possible?

- a. You flip a coin. λ
- b. You flip a coin and roll a 6-sided die. $2 \cdot 6 = 12$
- c. You flip a coin, roll a die, and pick a card from a standard deck.

$$2.6.52 = 624$$

<u>Example 6</u> At dinner you must choose an appetizer, an entrée, and a dessert. Your choices are:

appetizer—salad, fruit, or cheese

entrée—chicken or steak

dessert—pie or cake

How many outcomes are possible?

Example 7 A license plate is composed of 2 letters followed by 3 numbers followed by 2 letters. How many outcomes are possible?

Example 8 A license plate is composed of 2 letters followed by 3 numbers followed by 2 letters. You cannot repeat letters or numbers. How many outcomes are possible?

Example 9 A combination is composed of 3 digits. If you can repeat digits, how many combinations are possible?

$$10.10.10 = 1000$$

Example 10 A combination is composed of 3 digits. If you cannot repeat digits, how many combinations are possible?