Precalcnluy Unit 8 Notes—Limity Approaching a Real Number

Definition of a Limit , a

lim f(x) = L if and only if !im_ FE)= }ilq J(x)

What this says is that if you don’t get closer and closer to a number (the “v" or
Existence of a Limit ¥ k4 g ( ¥

f(x}} from both sides of the “x”, then there is no limit of f[x_:] at that point.

)lrﬂ}«:f(xilzi H.and anly if Now the actual point f(c:} may be defined {as in 8 non-continuous function)

im_ f(x)=t and Ilim Flx)=L at a completely different y (where no limit may occur), but in order for a limit
S IR xopem T tooceur, the x's have to approach a certain y value from both sides.

Three Ways to Find a Limit:
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Strategies for finding a limit approaching a real number , =

1. substitute x =g

< if you get a number, that is the limit value
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< if you get 0 the limit does not exist (the limit might have a direction)
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0
> if you get 0 do more work and then evaluate the limit

factor/reduce

find a common denominator

simplify complex fractions

multiply by the conjugate of an expression with a radical
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2. if piecewise: check to see that the right-hand limit = left-hand limit

Example 1 Find each limit.

A lim(4x’) = q(z)3: {3’7—5
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if and only if.
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 Key Concept

A function has an infinite
discontinuity at x = c if the
function value increases or
decreases indefinitely as x
approaches c from the feft
and right.

Example

A

Continuity at a Point
f(x) is continuous at X =¢.

lim f(x) = lim £(x) = f(c) .

'l‘ypesof isconinuity

One-sided Limits

A function has a jump
discontinuity at x = c if the
fimits of the function as x
approaches ¢ from the left
and right exist but have two
distinct values.

Example

Continunity on an Open Interval
f(x) is continuous ol the interval.{a.b).,
if and only if.

f(x) is continuous at all x e

(a.b) .

A function has a removable
discontinuity if the function
is continuous everywhere
except for a hole atx = ¢.

Example

Example 2

Refer to the graph to find eachof the following:

a) the value(s) of x for which the function is discontinuous
b) whyitis discontinuous at that value
¢) thetypeof discontinuity

d) whetheritis removable (R) or nonremoy
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Example 3

Based on the graph evaluate the following.

1. }iggf(?i)z -3 11 }i;%l_f(x)= Q

2, lim+f(x) = ‘A 12, liréi fix)= ()
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o) = 19{Truejor False: limf(x) exists at every ¢ on (1.3)
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10. f{=2) = O 20. True ot False\; 1i_r§1f(_x) exists at every con (—2,1)
| discony & X=0
Example 4 Use the graph of f(x) below to find the following:
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‘Example 6  Evaluate each limit.

A ?_g}i_—; b. ‘h_gl_/:i;i C. Ej_x}x;(Zx—FB) :@
lim (xr2)(6-2) ﬂ—*Z@ lim ety =2
A < (k= xrl) |2




