Series (for 2020 AP Exam)

Tests You Need to Know

Geometric Series Test:

If the series has the form $\sum_{n=1}^{\infty} ar^{n-1}$ or $\sum_{n=0}^{\infty} ar^n$, then the series converges if |r| < 1 and diverges

otherwise. If the series converges, then it converges to $\frac{a_1}{1-r}$.

p-series test:

If the series has the form $\sum \frac{1}{n^p}$, then the series converges if p > 1 and diverges otherwise. When p = 1, the series is the divergent Harmonic series.

Alternating Series Test:

If the series has the form $\sum (-1)^n a_n$, then the series converges if $0 < a_{n+1} \le a_n$ (decreasing terms) for all n, for some n, and $\lim_{n\to\infty} b_n = 0$. If either of these conditions fails, the test fails, and you need use a different test.

Ratio Test:

If $a_n > 0$ and $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = N$ (where N is a real number), then

- 1. $\sum a_n$ converges absolutely (and hence converges) if N < 1
- 2. $\sum a_n$ diverges if N > 1 or $N = \infty$
- 3. The test is inconclusive if N = 1 (use another test)

Use this test for series whose terms converge rapidly, for instance those involving exponentials and/or factorials!!!!!!!

Taylor Polynomial

The Taylor polynomial of degree n centered at x = a is

$$f(a)+f'(a)(x-a)+\frac{f''(a)}{2!}(x-a)^2+\frac{f'''(a)}{3!}(x-a)^3+...+\frac{f^{(n)}(a)}{n!}(x-a)^n$$

key ideas:

- The coefficient of the nth degree term centered at x = a is $\frac{f^{(n)}(a)}{n!}$.
- Generally, as the degree of the polynomial increases, the polynomial more closely approximates the function over some interval.
- A Taylor polynomial centered at x = a can be used to approximate function values of f near x = a.