Series (for 2020 AP Exam)

Tests You Need to Know

Geometric Series Test:

If the series has the form $\sum_{n=1}^{\infty} a r^{n-1}$ or $\sum_{n=0}^{\infty} a r^{n}$, then the series converges if $|r|<1$ and diverges otherwise. If the series converges, then it converges to $\frac{a_{1}}{1-r}$.

p-series test:

If the series has the form $\sum \frac{1}{n^{p}}$, then the series converges if $p>1$ and diverges otherwise. When $p=1$, the series is the divergent Harmonic series.

Alternating Series Test:

If the series has the form $\sum(-1)^{n} a_{n}$, then the series converges if $0<a_{n+1} \leq a_{n}$ (decreasing terms) for all n, for some n, and $\lim _{n \rightarrow \infty} b_{n}=0$. If either of these conditions fails, the test fails, and you need use a different test.

Ratio Test:

If $a_{n}>0$ and $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=N$ (where N is a real number), then

1. $\sum a_{n}$ converges absolutely (and hence converges) if $N<1$
2. $\sum a_{n}$ diverges if $N>1$ or $N=\infty$
3. The test is inconclusive if $N=1$ (use another test)

Use this test for series whose terms converge rapidly, for instance those involving exponentials and/or factorials!!!!!!!

Taylor Polynomial

The Taylor polynomial of degree n centered at $x=a$ is
$f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}$
key ideas:

- The coefficient of the $\mathrm{n}^{\text {th }}$ degree term centered at $x=a$ is $\frac{f^{(n)}(a)}{n!}$.
- Generally, as the degree of the polynomial increases, the polynomial more closely approximates the function over some interval.
- A Taylor polynomial centered at $x=a$ can be used to approximate function values of f near $x=a$.

