Derivatives

Derivative $=$ slope of the tangent line to the curve

A normal line is perpendicular to the tangent line.

Derivative Rules

Differentiation Rules	
Constant Rule	$\frac{d}{d x}[c]=0$
Power Rule	$\frac{d}{d x} x^{n}=n x^{n-1}$
Product Rule	$\frac{d}{d x}[f(x) g(x)]=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$
Quotient Rule	$\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}$
Chain Rule	$\frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) g^{\prime}(x)$

Derivatives of basic functions.

$$
\begin{array}{ll}
\frac{d}{d x}[c]=0 & (c, \text { constant }) \\
\frac{d}{d x}\left[x^{n}\right]=n x^{n-1} \\
\frac{d}{d x}\left[e^{x}\right]=e^{x} & \frac{d}{d x}\left[a^{x}\right]=a^{x} \ln a \\
\frac{d}{d x}[\ln |x|]=\frac{1}{x} & \frac{d}{d x}\left[\log _{a}|x|\right]=\frac{1}{x \ln a} \\
\frac{d}{d x}[\sin x]=\cos x & \frac{d}{d x}[\cos x]=-\sin x \\
\frac{d}{d x}[\tan x]=\sec ^{2} x & \frac{d}{d x}[\cot x]=-\csc ^{2} x \\
\frac{d}{d x}[\sec x]=\sec x \tan x & \frac{d}{d x}[\csc x]=-\csc x \cot x \\
\frac{d}{d x}\left[\sin ^{-1} x\right]=\frac{1}{\sqrt{1-x^{2}}} & \frac{d}{d x}\left[\cos { }^{-1} x\right]=-\frac{1}{\sqrt{1-x^{2}}} \\
\frac{d}{d x}\left[\tan ^{-1} x\right]=\frac{1}{1+x^{2}} & \frac{d}{d x}\left[\cot ^{-1} x\right]=-\frac{1}{1+x^{2}} \\
\frac{d}{d x}\left[\sec ^{-1} x\right]=\frac{1}{x \sqrt{x^{2}-1}} & \frac{d}{d x}\left[\csc ^{-1} x\right]=-\frac{1}{x \sqrt{x^{2}-1}}
\end{array}
$$

Higher Order Derivatives

First Derivative	y^{\prime},	$f^{\prime}(x)$,	$F^{\prime}(x)$,	$\frac{d y}{d x}$,	$\frac{d}{d x}[f(x)], \quad D_{x}[y]$	
Second Derivative	$y^{\prime \prime}$,	$f^{\prime \prime}(x)$,	$F^{\prime \prime}(x)$,	$\frac{d^{2} y}{d x^{2}}$,	$\frac{d^{2}}{d x^{2}}[f(x)]$,	$D_{x}^{2}[y]$
Third Derivative	$y^{\prime \prime \prime}$,	$f^{\prime \prime \prime}(x)$,	$F^{\prime \prime \prime}(x)$,	$\frac{d^{3} y}{d x^{3}}$,	$\frac{d^{3}}{d x^{3}}[f(x)]$,	$D_{x}^{3}[y]$
Fourth Derivative	$y^{(4)}$,	$f^{(4)}(x)$,	$F^{(4)}(x)$,	$\frac{d^{4} y}{d x^{4}}$,	$\frac{d^{4}}{d x^{4}}[f(x)]$,	$D_{x}^{4}[y]$
$\boldsymbol{n}^{\text {th }}$ Derivative	$y^{(n)}$,	$f^{(n)}(x)$,	$F^{(n)}(x)$,	$\frac{d^{n} y}{d x^{n}}$,	$\frac{d^{n}}{d x^{n}}[f(x)]$,	$D_{x}^{n}[y]$

Derivative of an Inverse

$$
\begin{aligned}
& \text { if } f^{-1}(x)=g(x) \\
& f(g(x))=x \\
& \frac{d}{d x} f(g(x))=\frac{d}{d x} x \\
& f^{\prime}(g(x)) \cdot g^{\prime}(x)=1 \\
& g^{\prime}(x)=\frac{1}{f^{\prime}(g(x))}
\end{aligned}
$$

Implicit Differentiation-use this process when the equation is not solved for y
$>$ Differentiate both sides of the equation with respect to x.
$>$ Apply the rules of differentiation. If an expression involves y, then include $\frac{d y}{d x}$.
$>$ Isolate all the $\frac{d y}{d x}$ terms on one side of the equation.
$>$ Factor out $\frac{d y}{d x}$.
$>$ Solve for $\frac{d y}{d x}$ by dividing.

Limit Definition of a Derivative

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Differentiability Implies Continuity

If f is differentiable at x, then f is continuous at x.

Some things which destroy differentiability:

1. A discontinuity (a hole or break or asymptote)
2. A sharp corner (ex. $f(x)=|x|$ when $x=0$)
3. A vertical tangent line (ex: $f(x)=\sqrt[3]{x}$ when $x=0$)
