Derivatives

Derivative = slope of the tangent line to the curve

A normal line is perpendicular to the tangent line.

Derivative Rules

Differentiation Rules					
Constant Rule	$\frac{d}{dx}[c] = 0$				
Power Rule	$\frac{d}{dx}x^n = nx^{n-1}$				
Product Rule	$\frac{d}{dx}[f(x)g(x)] = f'(x)g(x) + f(x)g'(x)$				
Quotient Rule	$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x)f'(x) - f(x)g'(x)}{\left[g(x) \right]^2}$				
Chain Rule	$\frac{d}{dx}[f(g(x))] = f'(g(x))g'(x)$				

Derivatives of basic functions.

$$\frac{d}{dx} [c] = 0 \quad (c, \text{ constant}) \qquad \frac{d}{dx} [x^n] = nx^{n-1}$$

$$\frac{d}{dx} [e^x] = e^x \qquad \qquad \frac{d}{dx} [a^x] = a^x \ln a$$

$$\frac{d}{dx} [\ln |x|] = \frac{1}{x} \qquad \qquad \frac{d}{dx} [\log_a |x|] = \frac{1}{x \ln a}$$

$$\frac{d}{dx} [\sin x] = \cos x \qquad \qquad \frac{d}{dx} [\cos x] = -\sin x$$

$$\frac{d}{dx} [\tan x] = \sec^2 x \qquad \qquad \frac{d}{dx} [\cot x] = -\csc^2 x$$

$$\frac{d}{dx} [\sec x] = \sec x \tan x \qquad \qquad \frac{d}{dx} [\csc x] = -\csc x \cot x$$

$$\frac{d}{dx} [\sin^{-1} x] = \frac{1}{\sqrt{1 - x^2}} \qquad \frac{d}{dx} [\cos^{-1} x] = -\frac{1}{\sqrt{1 - x^2}}$$

$$\frac{d}{dx} [\tan^{-1} x] = \frac{1}{1 + x^2} \qquad \frac{d}{dx} [\cot^{-1} x] = -\frac{1}{1 + x^2}$$

$$\frac{d}{dx} [\sec^{-1} x] = \frac{1}{x\sqrt{x^2 - 1}} \qquad \frac{d}{dx} [\csc^{-1} x] = -\frac{1}{x\sqrt{x^2 - 1}}$$

Higher Order Derivatives

First Derivative	у',	f'(x),	F'(x),	$\frac{dy}{dx}$,	$\frac{d}{dx}[f(x)],$	$D_x[y]$
Second Derivative	у",	f"(x),	F"(x),	$\frac{d^2y}{dx^2}$,	$\frac{d^2}{dx^2} [f(x)],$	$D_x^2[y]$
Third Derivative	у‴,	f'''(x),	F'''(x),	$\frac{d^3y}{dx^3}$,	$\frac{d^3}{dx^3} [f(x)],$	$D_x^3[y]$
Fourth Derivative	y ⁽⁴⁾ ,	$f^{(4)}(x)$,	$F^{(4)}(x)$,	$\frac{d^4y}{dx^4}$,	$\frac{d^4}{dx^4} [f(x)],$	$D_x^4[y]$
n th Derivative	y ⁽ⁿ⁾ ,	$f^{(n)}(x)$,	$F^{(n)}(x)$,	$\frac{d^n y}{dx^n}$,	$\frac{d^n}{dx^n} [f(x)],$	$D_x^{n}[y]$

Derivative of an Inverse

if
$$f^{-1}(x)=g(x)$$
 $f(g(x))=x$ $rac{d}{dx}\,f(g(x))=rac{d}{dx}\,x$ $f'(g(x))\cdot g'(x)=1$ $g'(x)=rac{1}{f'(g(x))}$

Implicit Differentiation—use this process when the equation is not solved for y

- \triangleright Differentiate both sides of the equation with respect to x.
- ightharpoonup Apply the rules of differentiation. If an expression involves y, then include $\frac{dy}{dx}$.
- ightharpoonup Isolate all the $\frac{dy}{dx}$ terms on one side of the equation.
- Factor out $\frac{dy}{dx}$.
- Solve for $\frac{dy}{dx}$ by dividing.

Limit Definition of a Derivative

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Differentiability Implies Continuity

If f is differentiable at x, then f is continuous at x.

Some things which destroy differentiability:

- 1. A discontinuity (a hole or break or asymptote)
- 2. A sharp corner (ex. f(x)=|x| when x=0)
- 3. A vertical tangent line (ex: $f(x) = \sqrt[3]{x}$ when x = 0)