Keview of Integration Calculus AP

1. Rocket A has positive velocity v(t) after being launched upward from an initial height of 0 feet at time t = 0 seconds. The velocity of the rocket is recorded for selected values of t over the interval [0, 80] seconds as shown in the table below. (2006 AB4/BC4)

				$\neg \neg$				\neg	
t (sec)	0	10	20	30	40	50	60	70	80
v(t) (f/s)	5	`14	22	29	35	40	44	47	49

- a) Using correct units, explain the meaning of $\int_{10}^{70} v(t) dt$ in terms of the rocket's flight.
- b) Use a midpoint Riemann sum with 3 subintervals of equal length to approximate $\int_{10}^{70} v(t) dt$
- 2. A metal wire of length 8 centimeters (cm) is heated at one end, The table below gives selected values of the Temperature T(x) in degrees Celsius, of the wire x cm from the heated end. The function T is decreasing and twice differentiable (2005 AB3/BC3)

differentiable. (2005 A	AB3/BC3)		4		-
Distance, x (cm)	0	1	5	6	8
Temp. T(x) ⁰ C	100	93	70	62	55

- a) Estimate T'(7). Show the work that leads to your answer. Indicate units of measure.
- b) Write an integral expression in terms of T(x) for the average temperature of the wire. Estimate the average temperature of the wire using a trapezoidal sum with four subintervals indicated by the data in the table. Indicate units of measure.
- 3. Use trapezoids to estimate the definite integral of $f(x) = -100x^2 + 90x + 14$ from x = 0.1 to x = 1. Use 9 increments.
- 4. The velocity (in mph) of a Piper Club aircraft traveling due west is recorded every minute during the first 10 min after takeoff. Use the Trapezoidal Rule to estimate the distance traveled after 10 minutes.

t	0	1	2	3	4	5	6	7	8	. 9	10
v(t)	0	50	60	80	90	100	95	85	80	75	85

- 5. Approximate the area bounded by $f(x) = 4 x^2$ and the x-axis using
 - a) Left-hand rectangles and four equal subdivisions
 - b) Right-hand rectangles and four equal subdivisions
 - c) Midpoint Rectangles and four equal subdivisions
 - d) Approximate this area using a Trapezoidal Rule and four equal subdivisions
 - e) Verify that that the Left-hand approximation and the Right hand approximation give the same result as the Trapezoidal rule

Notes Integration Table Problems 11/9/18 #1 a) the distance in feet traveled by the rocket from 10 sec to 70 sec

b) width subinterval =
$$\frac{70-10}{3}$$
 = 20

#2 a) (6,62) (8,55)
$$\frac{55-62}{8-6} = \frac{-7}{2} \frac{\text{oc}}{\text{cm}}$$

b) avg. value =
$$\frac{1}{b-q} \int f(x) dx$$

$$\frac{1}{8-0} \int_{0}^{8} T(x) dx = \frac{1}{8} (605.5) = 75.6875 \text{ °C}$$

+rap:
$$\frac{1}{2}(1)(100+93)$$

 $\frac{1}{2}(4)(93+70)$
 $\frac{1}{2}(1)(70+62)$
 $\frac{1}{2}(2)(62+55)$