Calculus AB

Notes--- Logistic Differential Equations
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The exponential is only bounded below. However, for population growth there exists some N
upper limit past which growth cannot occur.
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A logistic differential equatlon has the form: Py ky (1 - 4)

Where k and L are positive constants. L is the C&YV% % o PC\ Q ¥ 5( or the

fimib to Q'Yb\r'\’*x\ which can be sustained or supported as time t increases.
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Note: If y is between 0 and the carrying capacity L, then % > 0 and the population increas:

a
If y > L the E)-t{ < 0 and the population decreases.
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Finding the solution of the logistic equation.
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Ex 2) A state game commission releases 40 elk 1 me refuge. After S yearsf the e..
population is 104. The commission believes that the environment can support no I
than 4000 elk. The growth rate of the elk population p 1s

— P =
= kp (1 2 for 40 < p < 4000 :

Where t is the number of years.

a) Write a model for the elk population in terms of t.
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b) Use the model to estimate the elk population after 15 years.
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¢) Find the limit of the model as t = .
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Ex 3) Suppose the populatlon of the bears in a national park grows accordmg to the logistic

differential equation. — = 5P 0.002P?, where P is the number of bears in time ¢ year:
a) If P(0) = 100, then the {7, P(t) = 2500 ﬁﬁ: HP (. |
b) If P(0) = 1500, then the Lim P(t) = 2500 K=5
L= 2500

o) If P(0) = 3000, then the (T, P(t) = 2.5 cC

d) How many bears are in the park when the population is growing the fastest?
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Ex 4) Suppose a population of wolves grows to the logistic differential equation
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9P _ 3p — 0.01P? where P is the number of wolves at time t years. Which of the

followi’ng statements are true? ,_E 3P (\ . ___Zg_o. )
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1. The growth rate of the wolf population is greatest at P =150.%
III. If P > 300, the population of wolves is increasing /(

a) I only
b) 1I only
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e) All of them.

Ex 5) A population of animals growth is modeled by a function P that satisfies the logistic

differential equation Z—L_ = 0.01P(100 — P), where time t is measured in years.

a) If P(0) =20, solve for P as a function of ¢. Ig._ IOU (O O\)P ‘
b) Using the answer in part a), find P when t = 3 years.
c) Using the answer in part a), find t when P = 80 animals. d?_ _ \ P ( ‘- o )
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