

Circle center at the pole radius = a

 $r = a \sin \theta$

 $r = a\cos\theta$

Circles not centered at the pole a is the diameter

sine curves are symmetric to y-axis

cosine curves are symmetric to x-axis

 $r = a\theta$ Spiral of Archimides a controls the width (must be in radian mode)

Limaçons are in the form $r = a \pm b \sin\theta$ (symmetric to y-axis) or $r = a \pm b \cos\theta$ (symmetric to x - axis)

Limaçon with inner loop

a = bCardioid

(heart shaped)

b < a < 2bDimpled Limaçon

Convex Limaçon (one side is flattened)

Rose curves are in the form $r = a \cdot \sin(n\theta)$ or $r = a \cdot \cos(n\theta)$. The maximum diameter of a petal is controlled by a. If n is even, the rose curve will have 2n petals. If n is odd, the rose curve will have n petals. Interesting patters can be formed if n is a decimal and the curve is viewed with θ starting at 0 and going out to very large numbers.

 $r = a \cdot \sin(2\theta)$

 $r = a \cdot \sin 3\theta$

 $r = a \cdot \cos(4\theta)$

 $r = a \cdot \sin(5\theta)$

Lemniscates look like infinity signs and are in the form

 $r^2 = a^2 \cdot \sin(2\theta)$ [symmetric to the origin]

and

 $r^2 = a^2 \cdot \cos(2\theta)$ [symmetric to the x-axis]

If the coefficient of θ is a number other than 1 or 2, a deformed lemniscates will result.

 $r^2 = a^2 \cdot \sin(2\theta)$

 $r^2 = a^2 \cdot \cos(2\theta)$

 $r^2 = a^2 \cdot \cos(1.3\theta)$

Match the polar equations with their graphs relies

$$E_1$$
) $r = 3 - \cos\theta$

$$\frac{1}{\sum_{5}} r = 3 - 1.5 \sin\theta$$

$$\frac{2}{A} = 9 \quad r = 2 - 3\cos\theta$$

$$\int_{-2} r = 2 - 2\sin\theta$$

$$\underline{()}_{6)} r = 3.5\cos(2\theta)$$

$$H_{10}$$
) $r = 3\cos(4\theta)$

$$\overline{+}$$
 3) $r = 5\cos(3\theta)$

$$\underline{\underline{G}}_{7}) r = 5\sin(3\theta)$$

$$L_{11}$$
) $r = -4 \cos\theta$

$$\frac{\beta}{2}$$
 4) $r = 2 - 2\cos x$

$$\frac{\int_{-8}^{8} r^2 = -16\cos(2\theta)}{\text{K}_{12} r = 3.5\sin(2\theta)}$$

screen 3:2 ratio

xmin x-max gmin ymax -3 3 -2 2