Precalculus Unit 2

Notes-Graphs of Power Functions & Monomials

This exploration is about the graphs of two particular kinds of polynomials:

Power functions: A power function is a polynomial of the form $f(x) = x^n$.

We've previously studied x^2 , but what about other powers: x^3 , x^4 , x^5 , etc.

What can we find out about the graph of x^n in general?

Monomials: A monomial is a one-term polynomial, having the form $f(x) = a \cdot x^n$.

That is, a monomial is just a power function multiplied by a number a.

For example, $f(x) = 5x^3$ and $f(x) = -2x^4$ are power functions.

What do the graphs of these functions look like?

Investigation: graphs of power functions $f(x) = x^n$, $n = x^n$,

1. a. Graph the functions shown below on your calculator, which are all of the form $f(x) = x^n$.

- **b.** Explain how the n value affects the shape of the graph.
- "n" is even \rightarrow left ε rt. ends go in the same direction $y = x^2 \sqrt{1} \quad y = -x^2$

"n" is odd > left & rt. ends go in opposite directions

Investigations: graphs of monomials $f(x) = x^n$, n is a negative integer \Rightarrow rational function

2. a. Graph the functions shown below on your calculator, which are all of all of the where n is negative.

b. Explain how the a value affects the shape of the graph.

"a" vertical stretch or shrink

c. Explain how the n value affects the shape of the graph,

n even: symm with respect to y-axis "even" n odd: symm. with respect to origin

> horiz. asymptote at y=0 end behavior at both ends 70

notynomials

3. a. Graph the functions shown below on your calculator, which are all of the form $f(x) = ax^n$ where n is not an integer.

b. Explain how the a value affects the shape of the graph. "a" > vertical Stretch or Shrink

odd denom $\Rightarrow D: (-\omega, \infty)$ even denm⇒D: [0, ∞)

c. Explain how the n value affects the shape of the graph.

0<n<1 ends look like a root function n>1 ends look like a polynomial

n neg fraction \rightarrow looks like a rational function $y=2x^{-\frac{1}{3}}$ y=2x

Summary: End Behavior

The term *end behavior* refers to whether each end of a graph goes up or down. For example, the end behavior of $f(x) = x^3$ is: down on the left, up on the right. Here is what can be seen about end behavior in the graphs you made in problems 1-3.

Right End Behavior: The right end behavior of $f(x) = ax^n$ depends on whether a is __positive or negative_

When a is \longrightarrow , the right end behavior is \bigcirc

When a is _____, the right end behavior is _____

Left End Behavior: The left end behavior of $f(x) = ax^n$ depends on whether n is **even** or odd.

When n is even, the left end behavior is the same as the R.E.B.

When n is odd, the left end behavior is the opposite direction of R.E.B.

4. Without using a calculator and without looking back at earlier pages, make a rough sketch of the graph for each of the following functions of the form $f(x) = x^n$. Follow the rules about end behavior. You'll need to look at whether n is even or odd.

5. Again, without using a calculator, make a rough sketch of the graph for each of the following functions of the form $f(x) = x^n$. You'll need to look at whether n is even or odd and whether a is positive or negative.

