Derivatives of Inverse Functions - Classwork

<u>General Problem</u>: Find the derivative of the inverse function of f(x) at x = k.

Method 1: Simply finding the inverse function. This works when it is easy to generate the inverse function.

- a) Find the inverse function by interchanging x and y and solving for y
- b) Take the derivative of this new y. That will be the derivative of the inverse function.
- c) Plug in your given k value

Method 2: Not finding the inverse function because it is too difficult

- a) Find the inverse function by interchanging x and y.
- b) find $\frac{dy}{dx}$ implicitly c) Solve for $\frac{dy}{dx}$. It will be in terms
- c) Solve for $\frac{dy}{dr}$. It will be in terms of y.
- d) Replace the value of k for x in your inverse function from step a above and solve for y
- e) Plug that value of y into $\frac{dy}{dr}$

Example: If $f(x) = x^2, x \ge 0$, find the derivative of $f^{-1}(x)$ at x = 4

METHOD 1

METHOD 2

Note: It was necessary to restrict the domain of f(x) to $x \ge 0$ so that its inverse is a function: i.e. that f(x) is one-to-one (passes the horizontal line test).

Example: Find the derivative of the inverse function of $f(x) = x^3 - 4x^2 + 7x - 1$ at x = 1.

Method 1 will be too difficult. $y = x^3 - 4x^2 + 7x - 1$ so the inverse is $x = y^3 - 4y^2 + 7y - 1$

c)
$$\frac{dy}{dx} = \frac{1}{3(.349)^2 - 8(.349) + 7} = .219$$

Example: Find the derivative of the inverse function of $f(x) = e^x + \ln x$ at x = 3

Method 1 will be too difficult. $y = e^x + \ln x$ so the inverse is $x = e^y + \ln y$

a)
$$1 = \left(e^{y} + \frac{1}{y}\right) \frac{dy}{dx} \Rightarrow \frac{dy}{dx} = \frac{1}{e^{y} + \frac{1}{y}} \text{ or } \frac{dy}{dx} = \frac{y}{ye^{y} + 1}$$

b) Set $e^{y} + \ln y = 3$. Graphically, you get y = 1.0744.

Note: After you graphically intersect, you can easily get the answer by $\frac{1}{n\text{Deriv}(Y1,X,X)}$

Example: Find the derivative of the inverse function of $y = e^{x^2}$, x > 0

Inverse Function : $x = e^{y^2}$

Solution:
$$\ln x = y^2$$

 $y = \sqrt{\ln x} = (\ln x)^{\frac{1}{2}}$ $\frac{dy}{dx} = \frac{1}{2} (\ln x)^{-\frac{1}{2}} \frac{1}{x} = \frac{1}{2x(\ln x)^{\frac{1}{2}}}$

Sample Problems: Find the derivative of the inverse function of (use method 2 only if method 1 won't work)

a)
$$\frac{y = x^3 + 1 \text{ at } x = 9}{\frac{dy}{dx_{(x=2)}} = \frac{1}{3x^2} = \frac{1}{12}}$$

b) $\frac{dy}{dx_{(x=1)}} = \frac{1}{3x^2 + 5} = \frac{1}{8}$
c) $\frac{dy}{dx_{(x=\pi)}} = \frac{1}{1 + \cos x} = DNE$

Derivatives of Inverse Functions - Homework

For the problems below, find the derivative of f^{-1} for the function f at the specified value of x. No calculators.

1.
$$f(x) = x^3 + 2x - 1$$
 at $x = 2$
 $x^3 + 2x - 1 = 2 \implies x = 1$
 $\frac{dy}{dx_{(x=1)}} = \frac{1}{3x^2 + 2} = \frac{1}{5}$

3.
$$f(x) = \sin x \quad -\frac{\pi}{2} \le x \le \frac{\pi}{2} \quad \text{at } x = \frac{1}{2}$$
$$\boxed{\sin x = \frac{1}{2} \Rightarrow x = \frac{\pi}{6}}$$
$$\frac{dy}{dx_{\left(x = \frac{\pi}{6}\right)}} = \frac{1}{\cos x} = \frac{2}{\sqrt{3}}$$

2.
$$f(x) = 2x^5 + x^3 + 1$$
 at $x = 4$

$$2x^5 + x^3 + 1 = 4 \Rightarrow x = 1$$

$$\frac{dy}{dx_{(x=1)}} = \frac{1}{10x^4 + 3x^2} = \frac{1}{13}$$

4.
$$f(x) = \cos 2x \quad -\frac{\pi}{2} \le x \le \frac{\pi}{2}$$
 at $x = 1$
$$\frac{\cos 2x = 1 \Longrightarrow x = 0}{\frac{dy}{dx_{(x=0)}} = \frac{-1}{2\sin 2x} = DNE}$$

5.
$$f(x) = x^3 - \frac{4}{x}$$
 $x > 0$ at $x = 6$
 $x^3 - \frac{4}{x} = 6 \Rightarrow x = 2$
 $\frac{dy}{dx_{(x=2)}} = \frac{1}{3x^2 + \frac{4}{x^2}} = \frac{1}{13}$
6. $f(x) = \sqrt{x-4}$ at $x = 2$
 $\frac{\sqrt{x-4}}{dx_{(x=8)}} = \frac{1}{\frac{1}{2\sqrt{x-4}}} = 4$

For the problems below, find the derivative of f^{-1} for the function f at the specified value of x. Use calculators.

	$f(x) = x^3 - 2x^2 + 5x - 1$ at $x = 2$		$f(x) = \sqrt[3]{3x-5}$	at $x = -3$
7.	dy = 1	8.	$\frac{dy}{dy} =$	1 = 9
	$\frac{dy}{dx}_{(x=.737)} = \frac{1}{3x^2 - 4x + 5} = .272$		$dx_{(x=-7.333)}$ (2 m)	$\frac{1}{(5)^{2/3}}$
			(<i>3x</i>	-3)

9.
$$\frac{f(x) = \frac{x}{2} + \sin^2 x \quad \text{at } x = 3}{\frac{dy}{dx_{(x=4.309)}}} = \frac{1}{\frac{1}{\frac{1}{2} + 2\sin x \cos x}} = .818$$

10.
$$\frac{f(x) = xe^{\cos x} \quad \text{at } x = 3}{\frac{dy}{dx_{(x=4.335)}} = \frac{1}{xe^{\cos x}(-\sin x) + e^{\cos x}} = 0.287}$$