Derivatives of Inverse Functions - Classwork

General Problem: Find the derivative of the inverse function of $f(x)$ at $x=k$.
Method 1: Simply finding the inverse function. This works when it is easy to generate the inverse function.
a) Find the inverse function by interchanging x and y and solving for y
b) Take the derivative of this new y. That will be the derivative of the inverse function.
c) Plug in your given k value

Method 2: Not finding the inverse function because it is too difficult
a) Find the inverse function by interchanging x and y.
b) find $\frac{d y}{d x}$ implicitly
c) Solve for $\frac{d y}{d x}$. It will be in terms of y.
d) Replace the value of k for x in your inverse function from step a above and solve for y
e) Plug that value of y into $\frac{d y}{d x}$

Example: If $f(x)=x^{2}, x \geq 0$, find the derivative of $f^{-1}(x)$ at $x=4$

METHOD 1

a) $y=x^{2}$, so the inverse is $x=y^{2}$

$$
\text { therefore } y=\sqrt{x} \text { (first quadrant) }
$$

b) $y^{\prime}=\frac{1}{2 \sqrt{x}}$
c) $y^{\prime}(4)=\frac{1}{2 \sqrt{4}}=\frac{1}{4}$
d) $4=y^{2} \Rightarrow y=2($ quad I$)$
e) $\frac{d y}{d x}=\frac{1}{2 y}=\frac{1}{2(2)}=\frac{1}{4}$

Note: It was necessary to restrict the domain of $f(x)$ to $x \geq 0$ so that its inverse is a function: i.e. that $f(x)$ is one-to-one (passes the horizontal line test).

Example: Find the derivative of the inverse function of $f(x)=x^{3}-4 x^{2}+7 x-1$ at $x=1$.
Method 1 will be too difficult. $y=x^{3}-4 x^{2}+7 x-1$ so the inverse is $x=y^{3}-4 y^{2}+7 y-1$
a) $1=\left(3 y^{2}-8 y+7\right) \frac{d y}{d x} \Rightarrow \frac{d y}{d x}=\frac{1}{3 y^{2}-8 y+7}$
b) Set $y^{3}-4 y^{2}+7 y-1=1$. Graphically, you get $y=.349$.

c) $\frac{d y}{d x}=\frac{1}{3(.349)^{2}-8(.349)+7}=.219$

Example: Find the derivative of the inverse function of $f(x)=e^{x}+\ln x$ at $x=3$
Method 1 will be too difficult. $y=e^{x}+\ln x$ so the inverse is $x=e^{y}+\ln y$
a) $1=\left(e^{y}+\frac{1}{y}\right) \frac{d y}{d x} \Rightarrow \frac{d y}{d x}=\frac{1}{e^{y}+\frac{1}{y}}$ or $\frac{d y}{d x}=\frac{y}{y e^{y}+1}$
b) Set $e^{y}+\ln y=3$. Graphically, you get $y=1.0744$.

c) $\frac{d y}{d x}=\frac{1}{e^{1.0744}+\frac{1}{1.0744}}=.259$

Note: After you graphically intersect, you can easily get the answer by $\frac{1}{\mathrm{nDeriv}(\mathrm{Y} 1, \mathrm{X}, \mathrm{X})}$
Example: Find the derivative of the inverse function of $y=e^{x^{2}}, x>0$

$$
\text { Inverse Function : } x=e^{y^{2}}
$$

Solution: $\ln x=y^{2}$

$$
y=\sqrt{\ln x}=(\ln x)^{1 / 2} \quad \frac{d y}{d x}=\frac{1}{2}(\ln x)^{-1 / 2} \frac{1}{x}=\frac{1}{2 x(\ln x)^{1 / 2}}
$$

Sample Problems: Find the derivative of the inverse function of (use method 2 only if method 1 won't work)
a) $\begin{aligned} & y=x^{3}+1 \text { at } x=9 \\ & \frac{d y}{d x}(x=2) \\ & =\frac{1}{3 x^{2}}=\frac{1}{12}\end{aligned}$
b) $\begin{aligned} & y=x^{3}+5 x-1 \text { at } x=5 \\ & \frac{d y}{d x}=\frac{1}{3 x^{2}+5}=\frac{1}{8}\end{aligned}$
c) $\begin{aligned} & y=x+\sin x \text { at } x=\pi \\ & \frac{d y}{d x}(x=\pi) \\ & \end{aligned}$

Derivatives of Inverse Functions - Homework

For the problems below, find the derivative of f^{-1} for the function f at the specified value of x. No calculators.

1. $f(x)=x^{3}+2 x-1$ at $x=2$
2. $f(x)=2 x^{5}+x^{3}+1$ at $x=4$
$x^{3}+2 x-1=2 \Rightarrow x=1$
$\frac{d y}{d x}=\frac{1}{3 x^{2}+2}=\frac{1}{5}$

$$
\begin{aligned}
& 2 x^{5}+x^{3}+1=4 \Rightarrow x=1 \\
& \frac{d y}{d x_{(x=1)}}=\frac{1}{10 x^{4}+3 x^{2}}=\frac{1}{13}
\end{aligned}
$$

3. $f(x)=\sin x \quad-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$ at $x=\frac{1}{2}$

$$
\begin{aligned}
& \sin x=\frac{1}{2} \Rightarrow x=\frac{\pi}{6} \\
& \frac{d y}{d x}\left(x=\frac{\pi}{6}\right) \\
& =\frac{1}{\cos x}=\frac{2}{\sqrt{3}}
\end{aligned}
$$

4. $f(x)=\cos 2 x \quad-\frac{\pi}{2} \leq x \leq \frac{\pi}{2} \quad$ at $x=1$

$$
\begin{aligned}
& \cos 2 x=1 \Rightarrow x=0 \\
& \frac{d y}{d x}=\frac{-1}{2 \sin 2 x}=D N E
\end{aligned}
$$

5. $f(x)=x^{3}-\frac{4}{x} \quad x>0 \quad$ at $x=6$
6. $\quad f(x)=\sqrt{x-4} \quad$ at $x=2$

$$
\begin{aligned}
& x^{3}-\frac{4}{x}=6 \Rightarrow x=2 \\
& \frac{d y}{d x}_{(x=2)}=\frac{1}{3 x^{2}+\frac{4}{x^{2}}}=\frac{1}{13}
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{x-4}=2 \Rightarrow x=8 \\
& \frac{d y}{d x}=\frac{1}{\frac{1}{2 \sqrt{x-4}}}=4 \\
&
\end{aligned}
$$

For the problems below, find the derivative of f^{-1} for the function f at the specified value of x. Use calculators.

8. | $f(x)=\sqrt[3]{3 x-5} \quad$ at $x=-3$ |
| :--- |
| $\frac{d y}{d x}(x=-7.333)$ |
| $\frac{1}{\frac{1}{(3 x-5)^{2 / 3}}}=9$ |

$$
\begin{aligned}
& f(x)=\frac{x}{2}+\sin ^{2} x \quad \text { at } x=3 \\
& \frac{d y}{d x}(x=4.309) \\
& =\frac{1}{\frac{1}{2}+2 \sin x \cos x}=.818
\end{aligned}
$$

$$
\text { 10. } \begin{aligned}
& f(x)=x e^{\cos x} \quad \text { at } x=3 \\
& \frac{d y}{d x}=\frac{1}{x=4.335)}=\frac{1}{x e^{\cos x}(-\sin x)+e^{\cos x}}=0.287 \\
& \hline
\end{aligned}
$$

