## **Classifying Polar Graphs**

Just as was true with rectangular graphs, there are graphs in polar form that occur all the time and students should be able to recognize them by their equations.



r = aCircle

center at the pole radius = a



 $r = a\sin\theta$ 



 $r = a\cos\theta$ 

Circles not centered at the pole

a is the diameter

*cosine* curves are symmetric to *x*-axis sine curves are symmetric to y-axis



 $r = a\theta$ 

**Spiral of Archimides** a controls the width

(must be in radian mode)

**Limaçons** are in the form  $r = a \pm b \sin\theta$  (symmetric to y-axis) or  $r = a \pm b \cos\theta$  (symmetric to x - axis)



a < bLimaçon with inner loop



a = b

Cardioid (heart shaped)



b < a < 2b

Dimpled Limaçon



 $a \ge 2b$ 

Convex Limaçon (one side is flattened)

Rose curves are in the form  $r = a \cdot \sin(n\theta)$  or  $r = a \cdot \cos(n\theta)$ . The maximum diameter of a petal is controlled by a. If n is even, the rose curve will have 2n petals. If n is odd, the rose curve will have n petals. Interesting patters can be formed if n is a decimal and the curve is viewed with  $\theta$  starting at 0 and going out to very large numbers.



 $r = a \cdot \sin(2\theta)$ 



 $r = a \cdot \sin 3\theta$ 



 $r = a \cdot \cos(4\theta)$ 



 $r = a \cdot \sin(5\theta)$ 

Lemniscates look like infinity signs and are in the form

 $r^2 = a^2 \cdot \sin(2\theta)$ 

and [symmetric to the origin]  $r^2 = a^2 \cdot \cos(2\theta)$ 

[symmetric to the x-axis]

If the coefficient of  $\theta$  is a number other than 1 or 2, a deformed lemniscates will result.



 $r^2 = a^2 \cdot \sin(2\theta)$ 



 $r^2 = a^2 \cdot \cos(2\theta)$ 



 $r^2 = a^2 \cdot \cos(1.3\theta)$ 

## **Example 1** – Match the polar equations with their graphs below.

$$(1) r = 3 - \cos\theta$$

$$(2) r = 2 - 2\sin\theta$$

4) 
$$r = 2 - 2\cos\theta$$

5) 
$$r = 3 + 1.5\sin\theta$$

\_\_\_6) 
$$r = 3.5\cos(2\theta)$$

$$\underline{\phantom{a}}7) r = 5\sin(3\theta)$$

 $\underline{\phantom{a}}$ 3)  $r = 5\cos(3\theta)$ 

0) 
$$v = 2 - 3\cos\theta$$

$$10) r = 3\cos(4\theta)$$

$$r = 3\sin(3\theta)$$

$$_{8)} r^{2} = -16\cos(2\theta)$$

9) 
$$r = 2 - 3\cos\theta$$

$$= 10$$
)  $r = 3\cos(4\theta)$ 

$$\underline{\phantom{a}}$$
11)  $r = -4 \cos\theta$ 

$$_{--}$$
12)  $r = 3.5\sin(2\theta)$ 







D.









H.











## **Example 2** – Match the polar equations with their graphs below.

1) 
$$r = 2.5 + 2.5\sin\theta$$

2) 
$$r = 3$$

3) 
$$r = 3.5\sin(3\theta)$$

4) 
$$r = 4.5 \sin(2\theta)$$

$$\underline{\phantom{a}}5) r = 4.5\cos(2\theta)$$

$$=$$
 6)  $r = 1.5 + 2\cos\theta$ 

$$_{2}$$
7)  $r = -3\sin\theta$ 

8) 
$$r = 2 - \sin\theta$$

9) 
$$r^2 = 16\sin(2\theta)$$

$$10) r = 4\cos(5\theta)$$

$$_{11} r = 3.5\cos(3\theta)$$

$$(12)r = 2.5 - 2.5\cos\theta$$

$$=$$
 13)  $r = 3\cos\theta$ 

$$14) r = 1 + 4\sin\theta$$

$$r = 4.5\sin(6\theta)$$

$$(16) r = \frac{1}{2}\theta$$









E.







H.











M.









## Practice 4.4: Polar Graphs

Match the graph with its polar equation.

1) 
$$r = 2 \sin \theta$$

2) 
$$r = 4\cos 2\theta$$

3) 
$$r = 3(1 + \cos \theta)$$

4) 
$$r = 2 \sec \theta$$

131



(b)



(C)



(d)



- 5) Identify the polar graph (circle, spiral, cardioid, limacon, rose):
  - If the graph is a circle, name the center (in polar coordinates) and the radius.
  - If the graph is a limacon, name the type.
  - If the graph is a rose, state the number of petals.

1. 
$$r = 4 \cos \theta$$

7. 
$$r = -2 \sin \theta$$

2. 
$$r = 5 - 2\sin\theta$$

$$8. r = 6 + 6 \cos \theta$$

3. 
$$r = -7 \sin 10 \theta$$

9. 
$$r = 8 \cos 5\theta$$

4. 
$$r = 6\theta$$

10. 
$$r = -8$$

5. 
$$r = 4 + 7 \sin \theta$$

11. 
$$r = 8 + 6 \cos \theta$$

6. 
$$r = \frac{4}{\theta}$$