Classifying Polar Graphs Just as was true with rectangular graphs, there are graphs in polar form that occur all the time and students should be able to recognize them by their equations. r = aCircle center at the pole radius = a $r = a\sin\theta$ $r = a\cos\theta$ Circles not centered at the pole a is the diameter *cosine* curves are symmetric to *x*-axis sine curves are symmetric to y-axis $r = a\theta$ **Spiral of Archimides** a controls the width (must be in radian mode) **Limaçons** are in the form $r = a \pm b \sin\theta$ (symmetric to y-axis) or $r = a \pm b \cos\theta$ (symmetric to x - axis) a < bLimaçon with inner loop a = b Cardioid (heart shaped) b < a < 2b Dimpled Limaçon $a \ge 2b$ Convex Limaçon (one side is flattened) Rose curves are in the form $r = a \cdot \sin(n\theta)$ or $r = a \cdot \cos(n\theta)$. The maximum diameter of a petal is controlled by a. If n is even, the rose curve will have 2n petals. If n is odd, the rose curve will have n petals. Interesting patters can be formed if n is a decimal and the curve is viewed with θ starting at 0 and going out to very large numbers. $r = a \cdot \sin(2\theta)$ $r = a \cdot \sin 3\theta$ $r = a \cdot \cos(4\theta)$ $r = a \cdot \sin(5\theta)$ Lemniscates look like infinity signs and are in the form $r^2 = a^2 \cdot \sin(2\theta)$ and [symmetric to the origin] $r^2 = a^2 \cdot \cos(2\theta)$ [symmetric to the x-axis] If the coefficient of θ is a number other than 1 or 2, a deformed lemniscates will result. $r^2 = a^2 \cdot \sin(2\theta)$ $r^2 = a^2 \cdot \cos(2\theta)$ $r^2 = a^2 \cdot \cos(1.3\theta)$ ## **Example 1** – Match the polar equations with their graphs below. $$(1) r = 3 - \cos\theta$$ $$(2) r = 2 - 2\sin\theta$$ 4) $$r = 2 - 2\cos\theta$$ 5) $$r = 3 + 1.5\sin\theta$$ ___6) $$r = 3.5\cos(2\theta)$$ $$\underline{}7) r = 5\sin(3\theta)$$ $\underline{}$ 3) $r = 5\cos(3\theta)$ 0) $$v = 2 - 3\cos\theta$$ $$10) r = 3\cos(4\theta)$$ $$r = 3\sin(3\theta)$$ $$_{8)} r^{2} = -16\cos(2\theta)$$ 9) $$r = 2 - 3\cos\theta$$ $$= 10$$) $r = 3\cos(4\theta)$ $$\underline{}$$ 11) $r = -4 \cos\theta$ $$_{--}$$ 12) $r = 3.5\sin(2\theta)$ D. H. ## **Example 2** – Match the polar equations with their graphs below. 1) $$r = 2.5 + 2.5\sin\theta$$ 2) $$r = 3$$ 3) $$r = 3.5\sin(3\theta)$$ 4) $$r = 4.5 \sin(2\theta)$$ $$\underline{}5) r = 4.5\cos(2\theta)$$ $$=$$ 6) $r = 1.5 + 2\cos\theta$ $$_{2}$$ 7) $r = -3\sin\theta$ 8) $$r = 2 - \sin\theta$$ 9) $$r^2 = 16\sin(2\theta)$$ $$10) r = 4\cos(5\theta)$$ $$_{11} r = 3.5\cos(3\theta)$$ $$(12)r = 2.5 - 2.5\cos\theta$$ $$=$$ 13) $r = 3\cos\theta$ $$14) r = 1 + 4\sin\theta$$ $$r = 4.5\sin(6\theta)$$ $$(16) r = \frac{1}{2}\theta$$ E. H. M. ## Practice 4.4: Polar Graphs Match the graph with its polar equation. 1) $$r = 2 \sin \theta$$ 2) $$r = 4\cos 2\theta$$ 3) $$r = 3(1 + \cos \theta)$$ 4) $$r = 2 \sec \theta$$ 131 (b) (C) (d) - 5) Identify the polar graph (circle, spiral, cardioid, limacon, rose): - If the graph is a circle, name the center (in polar coordinates) and the radius. - If the graph is a limacon, name the type. - If the graph is a rose, state the number of petals. 1. $$r = 4 \cos \theta$$ 7. $$r = -2 \sin \theta$$ 2. $$r = 5 - 2\sin\theta$$ $$8. r = 6 + 6 \cos \theta$$ 3. $$r = -7 \sin 10 \theta$$ 9. $$r = 8 \cos 5\theta$$ 4. $$r = 6\theta$$ 10. $$r = -8$$ 5. $$r = 4 + 7 \sin \theta$$ 11. $$r = 8 + 6 \cos \theta$$ 6. $$r = \frac{4}{\theta}$$