Review for Unit 4 Test

1 For $0 \le t \le 13$, an object travels along an elliptical path given parametrically by $\begin{cases} x = 3\cos t \\ y = 4\sin t \end{cases}$. At the point at which

t=13, the object leaves the path and travels along the line tangent to the path at that point. What is the slope of the line on which the object travels?

$$a - \frac{4}{3}$$

$$b - \frac{3}{4}$$

$$c = -\frac{4\tan 13}{3}$$

$$d - \frac{4}{3\tan 13}$$

$$a - \frac{4}{3}$$
 $b - \frac{3}{4}$ $c - \frac{4 \tan 13}{3}$ $d - \frac{4}{3 \tan 13}$ $e - \frac{3}{4 \tan 13}$

2 The position of a particle moving in the xy-plane is given by the parametric equations $\begin{cases} x = t^3 - 3t^2 \\ y = 2t^3 - 3t^2 - 12t \end{cases}$. For what

values of t is the particle at rest?

b 0 only

c 2 only d-1 and 2 only e-1, 0, and 2

3 A curve C is defined by the parametric equations $\begin{cases} x = t^2 - 4t + 1 \\ y = t^3 \end{cases}$. Which of the following is an equation of the line

tangent to the graph of C at the point (-3,8)?

a
$$x = -3$$

$$b x = 2$$

$$c y = 8$$

c
$$y=8$$
 d $y=-\frac{27}{10}(x+3)+8$ e $y=12(x+3)+8$

4 A particle moves so that its position at time t is given by $\begin{cases} x = t^2 \\ y = \sin(4t) \end{cases}$. What is the speed of the particle when t = 3?

$$b = \frac{4\cos 12}{6}$$

b
$$\frac{4\cos 12}{6}$$
 c $\sqrt{(4\cos 12)^2 + 36}$ d $\sqrt{(\sin 12)^2 + 81}$ e $(4\cos 12)^2 + 36$

$$d \sqrt{(\sin 12)^2 + 81}$$

$$e (4\cos 12)^2 + 36$$

5 Which of the following integrals represents the area shaded in the graph shown at right? The curve is given by $r = 4 \sin 2\theta$.

$$a \int_{3\pi/2}^{2\pi} 2\sin(2\theta) d\theta \quad b \int_{\pi/2}^{\pi} 8\sin^2(2\theta) d\theta \quad c \int_{0}^{\pi} 2\sin^2(2\theta) d\theta$$

$$c \int_{0}^{\pi} 2\sin^{2}(2\theta)d\theta$$

$$d \int_{\pi/2}^{\pi} 2\sin(2\theta) d\theta \quad e \quad \int_{3\pi/2}^{2\pi} 4\sin^2(2\theta) d\theta$$

6 Which of the following integrals represents the arc length of the polar function $r = 1 + \cos\theta$ from $0 \le \theta \le \pi$?

a
$$\int_{0}^{\pi} \sqrt{(1+\cos\theta)^{2} + (-\sin\theta)^{2}} d\theta \, b \int_{0}^{\pi} \sqrt{1+\sin^{2}\theta} d\theta$$
c
$$\int_{0}^{\pi} (1+\cos\theta) d\theta \, d \int_{0}^{\pi} \frac{1}{2} (1+\cos\theta)^{2} d\theta$$
e
$$\int_{0}^{\pi} 2\pi (1+\cos\theta) \sin\theta \sqrt{(1+\cos\theta)^{2} + (-\sin\theta)^{2}} d\theta$$

$$\int_0^{\pi} (1+\cos\theta)d\theta$$

$$d \int_0^{\pi} \frac{1}{2} (1 + \cos \theta)^2 d\theta$$

$$e^{\int_{0}^{\pi} 2\pi (1+\cos\theta)\sin\theta \sqrt{(1+\cos\theta)^{2}+(-\sin\theta)^{2}} d\theta}$$

7 Consider the graph of the vector function $\mathbf{r}(t) = \langle 1 + t^3, 3 + 4t \rangle$. What is the value of $\frac{d^2y}{dx^2}$ at the point on the graph where x = 2?

a 0

 $b \frac{4}{3}$ $c - \frac{8}{3}$ $d - \frac{8}{9}$ $e - \frac{1}{18}$

8 A particle moves so that at time t > 0 its position vector is $\langle \ln(t^2 + 2t), 2t^2 \rangle$. At time t = 2, its velocity vector is

a $\left\langle \frac{3}{4}, 8 \right\rangle$ b $\left\langle \frac{3}{4}, 4 \right\rangle$ c $\left\langle \frac{1}{8}, 8 \right\rangle$ d $\left\langle \frac{1}{8}, 4 \right\rangle$ e $\left\langle -\frac{5}{16}, 4 \right\rangle$

9 Consider the curves $r_1 = 2\cos\theta$ and $r_2 = \sqrt{3}$.

a Sketch the curves on the axes provided at right.

b Show use of calculus to find the area of the region common to both graphs.

10 Consider the curve given parametrically by $\begin{cases} x = 2t^3 - 3t^2 \\ y = t^3 - 12t \end{cases}$.

a In terms of t, find $\frac{dy}{dx}$.

b Write an equation for the line tangent to the curve at the point at which t = -1.

c Find the x- and y-coordinates for each critical point on the curve and identify each point as having a vertical or horizontal tangent.

The asymptotes of the graph of the parametric equations $x = \frac{1}{t}$ and $y = \frac{t}{1+t}$ are 11.

(Hint: rewrite the curve in rectangular coordinates, then find its asymptotes.)

(A)
$$x = 0, y = 0$$

(B)
$$x = 0$$
 only

(C)
$$x = -1, y = 0$$

(D)
$$x = -1$$
 only

(E)
$$x = 0, v = 1$$

CALCULATOR-ACTIVE

12 An object moving along a curve in the xy-plane has position (x(t), y(t)) at time $t \ge 0$ with $\frac{dx}{dt} = 12t - 3t^2$ and

 $\frac{dy}{dt} = \ln(1+(t-4)^4)$. At time t=0, the object is at position (-13,5). At time t=2, the object is at point P with xcoordinate 3.

a Find the acceleration vector and the speed at time t=2.

b Find the y-coordinate of point *P*.

c Write an equation for the line tangent to the curve at point P.

d For what value(s) of t, if any, is the object at rest? Justify your answer.